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Abstract

In this dissertation we study scalar curvature rigidity phenomena for the upper hemi-

sphere, and subsets thereof. In particular, we are interested in Min–Oo’s conjecture

that there exist no metrics on the upper hemisphere having scalar curvature greater

or equal to that of the standard spherical metric, while satisfying certain natural

geometric boundary conditions.

While the conjecture as originally stated has recently been disproved, there are

still many interesting modifications to consider. For instance, it has been shown that

Min–Oo’s rigidity conjecture holds on sufficiently small geodesic balls contained in

the upper hemisphere, for metrics sufficiently close to the spherical metric. We show

that this local rigidity phenomena can be extended to a larger class of domains in

the hemisphere, in particular finding that it holds on larger geodesic balls, and on

certain domains other than geodesic balls (which necessarily have more complicated

boundary geometry). We discuss a possible method for finding the largest possi-

ble domain on which the local rigidity theorem is true, and give a Morse–theoretic

interpretation of the problem.

Another interesting open question is whether or not such a rigidity statement

holds for metrics that are not close to the spherical metric. We provide positive

evidence for a conjecture that a scalar curvature rigidity theorem can be proved

for metrics on sufficiently small geodesic balls in the hemisphere, provided certain

additional geometric constraints are satisfied.
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1

Introduction

The strongest local invariant of a Riemannian metric is the Riemann curvature ten-

sor, followed by the Ricci curvature and then the scalar curvature. While the scalar

curvature is the weakest of these invariants, it is, from an algebraic standpoint, the

simplest measurement of curvature, being a scalar function as opposed to a higher-

rank tensorial object. For any point p in a Riemannian manifold (Mn, g) one has

the following expansion for the volume of a geodesic ball centered at p:

Vol(Br(p))

ωnrn
= 1− R(p)

6(n− 2)
r2 +O(r4) (1.1)

where R(p) is the scalar curvature at p, and ωn is the volume of the unit ball in Rn.

Thus, on an infinitesimal level, the scalar curvature controls the volume of geodesic

balls. Globally, the following result has been shown.

Theorem 1. (Bray (1997)) Let ḡ denote a constant curvature metric on S3, with

Ric = λḡ and R̄ = 3λ. There exists a constant ε0 ∈ (0, 1) such that any complete,

smooth Riemannian manifold (M3, g) with Rg ≥ 3λ and Ricg ≥ ε0λg has volume

Vol(M, g) ≤ Vol(S3, ḡ).
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This theorem shows that a lower bound on scalar curvature results in an upper

bound on volume, provided the Ricci curvature is sufficiently positive. In the absence

of a positive lower bound on the Ricci curvature, there exist counterexamples showing

the result to be false. This demonstrates that the scalar curvature on its own is not

sufficiently strong to yield a global volume comparison.

Conversely, it is known in special cases that the volume function r 7→ Vol(Br(p))

controls the geometry of (M, g) near p.

Theorem 2. (Gray and Vanhecke (1979)) Suppose Vol(Br(p)) = ωnr
n for all p ∈M

and all sufficiently small r > 0. If any of the following conditions are satisfied

• dimM ≤ 3,

• Ricg is nonnegative or nonpositive,

• (M, g) is conformally flat,

• M is a compact, oriented 4-manifold whose Euler characteristic and signature

satisfy χ(M) ≥ −2
3
|τ(M)|,

• M is a product of spheres,

then (M, g) is flat.

The theorem is proved by considering higher-order terms in the power series

expansion (1.1), the coefficients of which are expressible as universal polynomials in

the curvature tensor and its derivatives. To demonstrate that this is nontrivial, we

mention that there exists a non-flat Riemannian 4-manifold with

Vol(Br(p)) = ωnr
n
(
1 +O(r6)

)
,

and a manifold of dimension 734 with

Vol(Br(p)) = ωnr
n
(
1 +O(r8)

)
,

for all p.
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1.1 Scalar curvature rigidity phenomena

It is an immediate consequence of the celebrated positive mass theorem (Schoen and

Yau (1979), Witten (1981), Parker and Taubes (1982)) that any complete Rieman-

nian manifold (Mn, g) that is isometric to Euclidean space outside a compact set,

and has nonnegative scalar curvature, is in fact globally isometric to Euclidean space.

(If n > 7 it is necessary to assume that M is a spin manifold.) This implies that any

compactly supported, non-isometric deformation g of the standard Euclidean metric

must have Rg < 0 somewhere. Equivalently, any metric on the torus Tn must have

negative scalar curvature somewhere, unless is it flat. A local version of this result

appeared in Fischer and Marsden (1975), preceding the proof of the positive mass

theorem.

Theorem 3. (Fischer and Marsden (1975)) Suppose (Mn, g0) is compact and flat.

For any real number p > n, there exists a neighborhood U of g0, in the W 2,p topology,

such that g ∈ U and Rg ≥ 0 implies g = ϕ∗g0 for some diffeomorphism ϕ of M .

Given a Riemannian metric g and a function S that is close toRg in an appropriate

sense, it is in general possible to perturb g to a nearby metric g̃ that has scalar

curvature Rg̃ = S. To make this more precise, we let Lg denote the linearization of

the scalar curvature operator, g 7→ Rg. The L2-formal adjoint is given by

L∗gu = Hessu− (∆u)g − uRic

for any function u. We say a metric g is static if kerL∗g is nontrivial. We then have

the following:

Theorem 4. (Corvino (2000)) Let Ω be a smooth domain compactly contained in a

smooth Riemannian manifold (M, g). Suppose L∗g : W 2,2
loc (Ω) → L2

loc(Ω) is injective.

Then for any smooth function S with supp(S−Rg) b Ω and ‖S−Rg‖Cα sufficiently
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small, there exists a smooth Riemannian metric g̃ on M such that Rg̃ = S in Ω and

g̃ ≡ g outside Ω.

A similar result was shown in Fischer and Marsden (1975) for compact manifolds;

the contribution of Corvino is to localize the deformation to a specified compact

domain. Viewing Theorem 3 in light of this result, we see that it is not possible to

pointwise increase the scalar curvature of Tn because g0 is static, with kerL∗g0 = R

comprising the constant functions. However, the condition kerL∗g = {0} is satisfied

for generic metrics, as demonstrated by the following theorem (cf. Besse (1987)).

Theorem 5. (Bourguignon (1975)) If kerL∗g 6= {0} then either (Mn, g) is Ricci-flat

and kerL∗g = R, or the scalar curvature is a strictly positive constant and −Rg/(n−1)

is an eigenvalue of the Laplacian.

This implies that the set of non-static metrics on M is open and dense in the

W 2,p topology for any p > n.

While the above results present obstructions to increasing the scalar curvature

of a Riemannian manifold, the following remarkable result shows that there is no

corresponding obstruction to pointwise decreasing the scalar curvature of a metric.

Theorem 6. (Lohkamp (1999)) Let U be an open subset in a smooth Riemannian

manifold (Mn, g), with n ≥ 3. Suppose f ∈ C∞(M) satisfies f < Rg in U and

f ≡ Rg in M \ U . Then for each ε > 0 there exists a smooth metric gε on M with

gε ≡ g in M \ Uε and

f − ε ≤ Rgε ≤ f

in Uε, where Uε denotes the ε-neighborhood of U computed with respect to g.

1.2 Min–Oo’s conjecture

In the above discussion of the positive mass theorem, it was seen that the behavior of

a Riemannian metric at infinity imposes restrictions on the geometry of the interior,
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and in particular the possible values of the scalar curvature. The following result

extends this idea to compact manifolds with boundary, where the interior geometry

is now controlled by the geometry at the boundary.

Theorem 7. (Miao (2002)) Let g be a metric on the closed unit ball B ⊂ Rn such

that ∂B is isometric to Sn−1, and has mean curvature Hg > n− 1. Then Rg(p) < 0

for some point p ∈ B.

In fact it suffices to have the mean curvature satisfy H ≥ n − 1, with strict

inequality as a point. In the case n = 3 this leads to a rigidity statement for the flat

metric on the unit ball.

Theorem 8. (Miao (2002)) Let g be a metric on the closed unit ball B ⊂ R3 such

that ∂B is isometric to S2, and has mean curvature Hg ≥ 2. If Rg ≥ 0 in B, then g

is isometric to the standard Euclidean metric, g0.

This was later generalized by Shi and Tam to a rigidity statement for arbitrary

convex domains in Rn. We recall that a domain in Rn is said to be convex if the

second fundamental form of its boundary (computed with respect to the Euclidean

metric) is nonnegative, and strictly convex if the second fundamental form is positive

definite.

Theorem 9. (Shi and Tam (2002)) Let Ω ⊂ Rn be a smooth, strictly convex domain,

with boundary Σ. Suppose g is a Riemannian metric on Ω such that:

• Rg ≥ 0 in Ω;

• (Σ, g) is isometric to (Σ, g0);

• Hg > 0 on Σ.

Then ∫
Σ

(H0 −Hg) dµg ≥ 0,
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with equality if and only if g is isometric to g0.

Based on similar considerations, Min–Oo made the following rigidity conjecture

for the upper hemisphere.

Conjecture 10. (Min-Oo, 1995) Let (Mn, g) be a compact Riemannian manifold

with boundary. Suppose that Rg ≥ n(n − 1), and that ∂M is totally geodesic and

isometric to Sn−1. Then M is isometric to Sn+ with the standard spherical metric, ḡ.

This result is now known to be false, due to a recent counterexample of Brendle

et al. (2010). However, there are certain restricted cases in which Min–Oo’s original

conjecture, or a suitable variation thereof, can be verified. We review these results

in the following section.

1.3 A survey of known results

We begin by discussing the case n = 2, where Min–Oo’s conjecture is true as origi-

nally stated. In the case we have the following theorem of Toponogov on the length

of closed geodesics on convex surfaces.

Theorem 11. (Toponogov (1959)) Let Σ be a closed surface with Gaussian curvature

K ≥ 1. Then any simple, closed geodesic γ in Σ has length L(γ) ≤ 2π. If there exists

a simple, closed geodesic of length 2π, then Σ is isometric to S2 with the standard

metric.

Although the result is stated for closed surfaces, it is immediate from the proof

(cf. Klingenberg (1995)) that the theorem is true when Σ is a compact surface with

totally geodesic boundary. Thus any compact surface Σ with K ≥ 1, such that ∂Σ is

totally geodesic and has length 2π, is necessarily isometric to the upper hemisphere

S2
+. This establishes Min–Oo’s conjecture in dimension two. An alternate proof has

been given recently, making use of the Gauss–Bonnet formula and the uniformization

theorem.
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Theorem 12. (Hang and Wang (2009)) Let (Σ, g) be a compact surface with bound-

ary, having Gaussian curvature K ≥ 1. Suppose the geodesic curvature k of the

boundary γ satisfies k ≥ c ≥ 0. Then L(γ) ≤ 2π/
√

1 + c2. Moreover, equality holds

if and only if (Σ, g) is isometric to a disc of radius cot−1(c) in S2.

As mentioned above, the proof utilizes conformal arguments that are only avail-

able in two dimensions. However, similar ideas can be used in higher dimensions to

prove a version of Min–Oo’s conjecture for metrics that are conformally equivalent

to the standard spherical metric, ḡ.

Theorem 13. (Hang and Wang (2009)) Assume Ω ⊂ Sn is a smooth domain with

metric g = u
4

n−2 ḡ, such that Rg ≥ n(n− 1) and u|∂Ω = 1 Then u ≥ 1 and Hg ≤ Hḡ.

Moreover, if Hg = Hḡ at any point on ∂Ω, or u = 1 at any point in the interior of

Ω, then u ≡ 1.

Additionally, it can be shown that the conjecture is false for domains strictly

larger than the hemisphere, even when one restricts attention to the conformal class

of ḡ. We let B(N, r) denote the geodesic ball of radius r centered at the north pole,

so that B
(
N, π

2

)
= Sn+.

Theorem 14. (Hang and Wang (2006)) For any r ∈ (π
2
, π) there is a smooth metric

g = e2φḡ on Sn with the following properties:

• Rg ≥ n(n− 1);

• suppφ ⊂ B(N, r);

• φ 6= 0.

The next positive result in the direction of Min–Oo’s conjecture is

Theorem 15. (Eichmair (2009)) Let (M3, g) be a compact, orientable Riemannian

manifold with scalar curvature Rg ≥ 6, Ricci curvature Ricg > 0 and totally geodesic
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boundary ∂M . If ∂M has area |∂M | ≥ 4π and is an isoperimetric surface for the

doubled manifold (M̃, g̃), then (M, g) is isometric to (S3
+, ḡ).

We recall that an isoperimetric surface is the boundary of an isoperimetric region,

which is a domain Ω ⊂M satisfying

|∂Ω| = inf {|∂Ω′| : Ω′ ⊂M is a domain with Vol(Ω′) = Vol(Ω)} .

Thus the hypotheses of the theorem require that any domain Ω in the doubled

manifold M̃ with Vol(Ω) = Vol(M) has area |∂Ω| ≥ |∂M |. This is a non-local

boundary condition, in the sense that it depends on the behavior of (M, g) away

from the boundary. Also of note is the fact that this theorem does not need the

boundary to be isometric to S2, but instead only requires it to have the same area.

(If |∂M | > 4π, one could rescale g to obtain a new metric satisfying all the hypotheses

of the theorem, with |∂M | = 4π.)

The next positive result assumes a lower bound on Ricci curvature, rather than

scalar curvature. This permits the use of Reilly’s theorem on Dirichlet eigenvalues

for manifolds with a lower curvature bound.

Theorem 16. (Reilly (1977)) Let (Mn, g) be a compact Riemannian manifold with

boundary Σ. Assume that Ricg ≥ (n − 1)g and Hg ≥ 0. Then λ1(−∆) ≥ n, with

equality precisely when M is isometric to Sn+.

Reilly’s theorem, together with the Bochner formula, implies the following rigidity

statement for manifolds with bounded Ricci curvature and convex boundary.

Theorem 17. (Hang and Wang (2009)) Let (Mn, g) be a compact Riemannian man-

ifold with boundary Σ. Suppose:

• Ricg ≥ (n− 1)g;

• (Σ, g) is isometric to (Sn−1, ḡ);

8



• Σ is convex in M .

Then M is isometric to Sn+.

We observe that this theorem requires convexity of the boundary, so the second

fundamental form is assumed only to be nonnegative, rather than zero. This was

also the case when n = 2, and when g was assumed to be conformal to ḡ.

Before stating the next result in our overview of scalar curvature rigidity theo-

rems, we recall that an embedded, incompressible projective plane in a 3-manifold

M is an embedded hypersurface Σ
i−→ M such that Σ is homeomorphic to RP2, and

the induced map i∗ : π1(Σ)→ π1(M) is injective. We let

A(M, g) := inf{|Σ| : Σ is an embedded, incompressible projective plane}.

Theorem 18. (Bray, Brendle, Eichmair and Neves (2010)) Let (M3, g) be a compact

Riemannian manifold that contains an embedded, incompressible projective plane.

Then

A(M, g) inf Rg ≤ 12π,

with equality precisely when (M, g) has constant sectional curvature.

We complete our survey of positive results with a result on graphical hypersurfaces

in Euclidean case. In the following theorem B denotes the open unit ball in Rn.

Theorem 19. (Huang and Wu (2010)) Suppose u ∈ C2(B) ∩ C1(B̄), and let Mu ⊂

Rn+1 denote the graph of u over B̄. If the induced metric on Mu has scalar curvature

R ≥ n(n− 1), then Mu is isometric to Sn+.

We note that, in contrast to previous results, this theorem has no restrictions

whatsoever on the boundary behavior of u. However, the requirement that M is

a graphical hypersurface in Rn is rather stringent, so it is not surprising that less

control of the boundary geometry is needed,

9



It was recently discovered that Min-Oo’s original conjecture is false, as demon-

strated by the following theorem.

Theorem 20. (Brendle, Marques and Neves (2010)) For any n ≥ 3, there exists a

smooth Riemannian metric g on the hemisphere Sn+ with the following properties:

• Rg ≥ n(n− 1) in Sn+;

• Rg(p) > n(n− 1) for some point p ∈ Sn+;

• g agrees with ḡ in a neighborhood of ∂Sn+.

There are two main steps in the proof. First, a one-parameter family of metrics,

g(t), is constructed, with Rg(t) > n(n− 1) and Hg(t) > 0 for t > 0 sufficiently small.

The family additionally satisfies g(0) = ḡ and g(t)(X, Y ) = ḡ(X, Y ) for all X and

Y in TSn|∂Sn+
. (This is stronger than the statement that g and ḡ induce the same

metric on the boundary, because it applies to the normal direction also.) Then a

delicate gluing argument is applied to construct a metric that agrees with ḡ near the

boundary, and has the properties claimed by the above theorem.

In particular, we note that the first step of the construction outlined above implies

that the Min–Oo conjecture—with the totally geodesic boundary condition replaced

by the weaker constraint Hg ≥ 0—is not even true for metrics that are C2-close

to the standard spherical metric. However, such a local result is true if we restrict

our attention to a domain smaller than the entire hemisphere. For convenience we

let f denote the restriction of the Euclidean coordinate function xn+1 to the sphere

Sn ⊂ Rn+1, and define Ω = {f ≥ c}, so that the case c = 0 corresponds to the entire

upper hemisphere.

Theorem 21. (Brendle and Marques (2010)) Let Ω = {f ≥ c}, where c ≥ 2√
n+3

.

Let g be a Riemannian metric on Ω with the following properties:

10



• Rg ≥ n(n− 1) in Ω;

• Hg ≥ Hḡ on ∂Ω;

• g and ḡ induce the same metric on ∂Ω.

If g− ḡ is sufficiently small in the W 2,p norm, then g = ϕ∗ḡ for some diffeomorphism

ϕ : Ω→ Ω with ϕ|∂Ω = id.

We thus see that local rigidity holds on sufficiently small geodesic balls, but fails

on the entire hemisphere, and hence global rigidity also fails on the hemisphere.

The main goal of this dissertation is to investigate the following problems:

1. What is the largest ball on which the above local rigidity theorem is valid?

2. Can the theorem be extended to domains other than geodesic balls?

3. Is there any domain on which a global rigidity theorem is true?

Problems 1 and 2 are natural generalizations of Theorem 21. In particular, it

would be interesting to find the exact point at which the geodesic balls {f ≥ c} lose

their rigidity, and to understand the geometric significance of this critical domain.

Since Theorem 21 demonstrated that geodesic balls are rigid only when of sufficiently

small radius, it is reasonable to ask whether or not there is a global rigidity theorem

on appropriately small domains. This is the motivation underlying Problem 3.

Progress toward these goals is summarized in the following section.

1.4 New results

The local rigidity theorem in Brendle and Marques (2010) is established by finding

an upper bound for the integral

I :=

∫
Ω

f(Rg − R̄)dV̄ ,

11



where R̄ = n(n− 1) is the scalar curvature of the spherical metric, ḡ. The resulting

bound involves terms proportional to the first two variations of the mean curvature

Hg, evaluated at ḡ. Applying the hypothesis Hg ≥ H̄, it is then shown that I

is negative when g is sufficiently close to ḡ. However, the curvature assumption

Rg ≥ R̄ implies I ≥ 0 and a contradiction is obtained, thus proving the local rigidity

theorem.

Our first contribution is to recognize that the interior and boundary terms com-

ing from I can combined into a single variational computation by considering the

functional

FΩ(g) :=

∫
Ω

f
(
Rg − R̄

)
dV̄ + 2

∫
Σ

f |N̄ |−1
g

(
Hg − H̄

)
dµ̄.

This is clearly nonnegative when the hypotheses of the local rigidity theorem are

satisfied, so it suffices to prove that, for appropriate domains, FΩ(g) is negative

in some neighborhood of ḡ. To do so, we show that for certain choices of Ω, the

spherical metric ḡ is a nondegenerate critical point of FΩ. It then follows from the

Morse–Palais lemma that the behavior of FΩ near ḡ is entirely determined by the

Hessian, D2FΩ(ḡ).

Computing the second variation explicitly, we find that D2FΩ(ḡ) comprises inte-

rior terms, which are always negative, and boundary terms, which will be positive

when Ω is large. We then show that the positive boundary terms can be controlled by

the negative interior terms, via a weighted Sobolev trace-type inequality. This yields

a improvement on the local rigidity statement of Brendle and Marques (2010), since

it allows us to prove D2FΩ(ḡ) is negative definite even in the presence of positive

boundary terms.

Theorem 22. Suppose Ω = {f ≥ c} ⊂ Sn with

c2 ≥

{
2

n+1
if n ≤ 5,

4
(

4+n−
√

2n−1
n2+6n+17

)
if n > 5.

12



n 3 4 5 10 100 1000

2/
√
n+ 3 0.816 0.756 0.707 0.555 0.197 0.0632

c from Theorem 22 0.707 0.632 0.577 0.467 0.184 0.0618

Table 1.1: Comparison of Theorem 22 with the local rigidity theorem of Brendle and
Marques (2010).

Then for p > n there is a W 2,p neighborhood U of ḡ such that any g ∈ U with

Rg ≥ R̄, Hg ≥ H̄ and gΣ = ḡΣ is given by g = ϕ∗ḡ for some diffeomorphism with

ϕ|Σ = id.

It is clear from the method of proof that this is always a strict improvement over

the result of Brendle and Marques, which gives a lower bound c ≥ 2/
√
n+ 3. For

the sake of comparison we compute the respective lower bounds in a few dimensions;

these are reported in Table 1.1. A simple computation shows that

4

n+ 3
− 4

(
4 + n−

√
2n− 1

n2 + 6n+ 17

)
∼ 4
√

2

n3/2

as n → ∞. This gives a quantitative estimate of the amount by which the lower

bound on c from Theorem 22 is an improvement over Brendle and Marques’ lower

bound, in the limit as n increases to infinity.

Our variational analysis of the functional FΩ(g) is sufficiently general as to allow

for the study of domains other than geodesic balls. The geodesic balls {f ≥ c}

considered above have totally umbilic boundary, so it is not surprising that some

additional control on the geometry of the boundary is necessary in order to obtain

a similar result for nonspherical domains. We thus assume that the mean curvature

is sufficiently large compared to the smallest eigenvalue of the second fundamental

form, as made precise by the following theorem.

Theorem 23. Suppose Ω ⊂ {f ≥ c} ⊂ Sn has second fundamental form Ā ≥ λḡ for

13



some function λ ∈ C0(Σ), and mean curvature

H̄ ≥ 1

2c

(
−λ+ 5

√
1− c2 +

√
λ2 + 6λ

√
1− c2 + 17(1− c2)

)
.

Then for any p > n there is a W 2,p neighborhood U of ḡ such that any g ∈ U with

Rg ≥ R̄, Hg ≥ H̄ and gΣ = ḡΣ is given by g = ϕ∗ḡ for some diffeomorphism with

ϕ|Σ = id.

It is important to note that the bound relating the mean curvature and second

fundamental form is to be computed with respect to ḡ, so this is a requirement on

the domain Ω ⊂ Sn, and has nothing to do with g. The condition on the boundary

geometry of g is that Hg ≥ H̄, as before.

In the case that Σ is convex, hence Ā ≥ 0, the required lower bound on the mean

curvature simplifies to

H̄ ≥ 5 +
√

17

2

√
1− c2

c
.

It is also easy to see that this yields a positive result in the special case that Ω

is a geodesic ball {f ≥ c}, though the conclusion is somewhat weakened from that

of Theorem 22 (which is of course less generally applicable). For n = 3 we find the

lower bound c ≈ 0.843.

Finally, we consider the eigenvalue problem associated to the quadratic form

B(h, h) := −D2FΩ(ḡ)(h, h) on the geodesic ball Ω = {f ≥ c}. In particular, we

show that for any c ∈ (0, 1) there exists h ∈ W 1,2(Ω) satisfying

B(h, h) = µ(c) := inf{B(h′, h′) : h′ ∈ W 1,2},

and that h is in fact a smooth solution of an elliptic boundary-value problem. We

prove that µ : [0, 1)→ R is continuous, then conclude our discussion of local rigidity

with the following Morse-theoretic conjecture.

14



Conjecture 24. There exist constants c1 > c2 > · · · > cN such that the domain

{f ≥ c} is nondegenerate for all c ∈ [0, 1) \ {c1, . . . , cN}. Moreover, the index of the

quadratic form B is given by

ind B(c) = max{i : ci > c}.

This says that the index of B is given by the number of degenerate geodesic balls

strictly contained in {f ≥ c}, and that B is positive definite if and only if c > c1.

We next turn our attention to potential global rigidity statements, in particular

focusing on the question of whether or not Min–Oo’s conjecture is true on some do-

main smaller than the hemisphere. We perform a blowup analysis by assuming the

existence of counterexamples on arbitrarily small domains, which are then rescaled

to produce a sequence of metrics on the unit ball in Rn. If the original sequence

of counterexamples satisfies some uniform geometric bounds, it is possible to ex-

tract a convergent subsequence from the rescaled sequence of metrics—all of which

have nonnegative scalar curvature and boundary behavior approaching that of the

standard Euclidean metric.

The idea is then to prove the limiting metric is flat, hence the original sequence

is converging to the standard spherical metric in an appropriately strong topology.

This would eventually produce a counterexample to the local version of Min–Oo’s

conjecture, thus yielding a contradiction.

That the limit is flat seems like a straightforward application of the positive mass

theorem. However, the subsequence that we find is only converging in C1,α for some

α ∈ (0, 1), so the limiting metric may not even have well-defined scalar curvature.

To address this issue, we prove in Chapter 4 a version of the positive mass theorem

for compact manifolds with boundary (similar to the results of Miao and Shi–Tam),

for metrics that are a priori only of class C1.

In Chapter 5 we use our C1 rigidity theorem to prove that the limiting metric of

15



the above-constructed subsequence is indeed flat, and that the convergence occurs

in W 2,p for any p ≥ 1. Rescaling back to the original sequence of counterexamples

on Sn, we find that these converge to the standard spherical metric in W 2,p for any

1 ≤ p ≤ n
2
. While this convergence is not strong enough to permit application of the

local rigidity theorem, it is interesting nonetheless, and suggests future directions to

explore in pursuit of global rigidity.

1.5 Definitions and notation

We adopt the convention that a tensor field of type (p, q) has p contravariant and

q covariant indices. Thus vector fields and one-forms are of type (1, 0) and (0, 1),

respectively. Given a Riemannian metric g with the corresponding Levi–Civita con-

nection ∇, we define the curvature operator by the formula

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

for any vector fields X, Y and Z. The Riemann curvature tensor is the (0, 4)-tensor

given by

Rm(Z, Y, Z,W ) := 〈R(X, Y )Z,W 〉.

Following this sign convention, the Ricci tensor Ric is the symmetric (0, 2)-tensor

obtained by tracing Rm in the first and last indices. We write this as Ric = tr14 Rm.

In local coordinates (x1, . . . , xn) we have Rjk := Ric(∂j, ∂k) = gilRijkl. where Rijkl :=

Rm(∂i, ∂j, ∂k, ∂l). The components of the curvature tensor can be computed explicitly

in terms of the Christoffel symbols

Γkij :=
gkl

2
(∂igjl + ∂jgil − ∂lgij) . (1.2)

We will make frequent use of the following lemma.

Lemma 25. Each tensor field h of type (0, 2) satisfies the commutation relation

∇i∇jhkl = ∇j∇ihkl −R m
ijk hml −R m

ijl hkm.
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The divergence of a (p, q)-tensor A is the (p, q − 1)-tensor δA := − tr12∇A. The

formal L2-adjoint of δ is the covariant derivative ∇. The restriction of δ to the space

of symmetric (0, 2)-tensors has formal adjoint

δ∗ω =
1

2
Lω]g, (1.3)

where ω# denotes the vector field dual to the one-form ω. We define the matrix

product of (0, 2)-tensors by A×B := tr23A⊗B.

Lemma 26. Let h by a symmetric (0, 2)-tensor field. Then

δ2(h× h) = ∇khij∇ihjk − 2〈h,∇(δh)〉+ |δh|2 + 〈h× h,Ric〉 −Rijklh
ilhjk.

Proof. In local coordinates we have (h× h)jl = gpqhjphql. We thus compute

δ2(h× h) = gilgjkgpq∇i∇khjphql

= gilgjkgpq(hql∇i∇khjp +∇ihql∇khjp +∇ihjp∇khql + hjp∇i∇khql).

We immediately recognize the first two terms as −〈h,∇(δh)〉 and |δh|2, respectively.

To compute the fourth term we use Lemma 1.3 to obtain

gilgjkgpqhjp∇i∇khql = gilhkq(∇k∇ihql −R m
ikq hml −R m

ikl hqm)

= −〈h,∇(δh)〉 −Rikqmh
mihkq + 〈h× h,Ric〉.

The proof follows after reindexing.

Abusing notation, we denote the divergence of a vector field, X, by δX. (In the

above notation this would be written δ(X[).) Now suppose M is a compact, oriented

Riemannian manifold with boundary ∂M , and inward unit normal N . With our sign

conventions, the divergence theorem says∫
M

δX =

∫
∂M

〈X,N〉 (1.4)

for any vector field X on M .

We next recall some variational formulae for evolving Riemannian metrics.
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Lemma 27. Let g(t) be a smooth one-parameter family of Riemannian metrics mov-

ing with speed h. The following formulae hold:

∂

∂t
gij = −hij; (1.5)

∂

∂t
Γkij =

gkl

2
(∇ihjl +∇jhil −∇lhij) ; (1.6)

2
∂

∂t
R l
ijk = glm (∇i∇khjm +∇j∇mhik −∇i∇mhjk −∇j∇khim)

− glp
(
R q
ijk hpq +R q

ijp hkq
)

; (1.7)

−2
∂

∂t
Rjk = ∆Lhjk +∇j∇k(trh) +∇j(δh)k +∇k(δh)j; (1.8)

∂

∂t
R = δ2h−∆(trh)− 〈h,Ric〉. (1.9)

In the penultimate formula, ∆L denotes the Lichnerowicz Laplacian, defined by

∆Lhjk := ∆hjk + 2Rijklh
il − gil (Rijhkl +Rklhij)

for any symmetric (0, 2)-tensor field h.

We finally discuss the geometry of submanifolds. Suppose Σ ⊂M is an orientable

hypersurface, with unit normal N . We define the second fundamental form A by

A(X, Y ) := 〈∇XY,N〉

for all tangential vector fields X and Y . This implies ∇XY = ∇Σ
XY + A(X, Y )N ,

where ∇Σ denotes the Levi–Civita connection of the induced metric on Σ. We then

define the mean curvature H := trΣ A. When Σ is the boundary of a domain Ω ⊂M ,

we choose N to be the inward unit normal. With these conventions the unit sphere

in Rn has mean curvature n− 1.

For any symmetric (0, 2)-tensor T and vector field X, we let T · X := T (X, ·)]

denote the vector field dual to the one-form T (X, ·). We then have the following

simple but useful observation.
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Lemma 28. For every tangential vector field X we have

∇XN = −A ·X.

The proof follows immediately from the definition of A. We finish with a coordi-

nate construction that will prove useful in computing the first and second variation

of the second fundamental form.

Lemma 29. Let p ∈ M . There exists an orthonormal frame (E1, . . . , En) in a

neighborhood U of p in M such that

Eα|p is tangent to Σ for 1 ≤ α ≤ n− 1,

En|p is normal to Σ,

(∇Ei) (p) = 0 for all i.

Such a frame will be called an adapted geodesic normal frame at p. To construct

such a frame, we simply choose orthonormal frame fields {Ẽi} with
(
∇Ẽi

)
(p) = 0,

and apply a constant rotation, Ej = Λi
jẼi, so that En = N at p.

Finally, letting j denote the inclusion of Σ into M , we define for any tensor T on

M the tangential restriction TΣ := j∗T . Note that this only contains the tangential

part of T , so it is a section of the tensor bundle of TΣ→ Σ, rather than TM → Σ.
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2

A functional inequality for the scalar and mean
curvature

In this chapter we define a functional F of Riemannian metrics on a domain Ω ⊂ Sn,

incorporating both the scalar curvature in the interior and the mean curvature on

the boundary. Through a series of lengthy variational computations, we find the

first and second variation of F . It is observed that the standard spherical metric,

ḡ is a critical point for F . We then apply the Morse–Palais lemma, together with

a suitable version of Ebin’s slice theorem, to provide an exact formula for F(g) for

metrics g that are suitably close to ḡ. This expression, given by Theorem 30, will be

used in Chapter 3 to prove rigidity theorems for certain classes of domains.

2.1 The weighted scalar curvature functional

Let f := xn+1|Sn denote the restriction to the sphere of the Euclidean coordinate

function xn+1. For a domain Ω ⊂ Sn with smooth boundary Σ, we define the weighted

scalar curvature functional by

FΩ(g) :=

∫
Ω

f
(
Rg − R̄

)
dV̄ + 2

∫
Σ

f |N̄ |−1
g

(
Hg − H̄

)
dµ̄ (2.1)
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for any Riemannian metric g on Ω. Here dV̄ denotes the volume form of the standard

spherical metric, ḡ, and dµ̄ the corresponding area form on Σ. Additionally, N̄ is the

inward unit normal computed with respect to ḡ. The R̄ term in the first integral is

constant (independent of g); it is included so that FΩ(ḡ) = 0.

We say that a domain Ω is nondegenerate if the bilinear form D2FΩ(ḡ)(h, h) is

nondegenerate on the space {h ∈ W 2,p : δ̄h = 0 and hΣ = 0} for some p > n.

Theorem 30. Suppose Ω ⊂ Sn is a nondegenerate domain. If g and ḡ induce

the same metric on Σ and ‖g − ḡ‖W 2,p(Ω,ḡ) is sufficiently small, then there exists a

diffeomorphism ϕ : Ω→ Ω that fixes Σ, such that

2FΩ(ϕ∗g) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
(d trh)2 + |h|2 + (trh)2

)

+

∫
Σ

[
−2h(N,N)h(∇Σf,N) +

(
h(N,N)2 + (h× h)(N,N)

)
∇Nf

]
+

∫
Σ

f

[
1

2
h(N,N)2H − (h× h)(N,N)H − 〈(h× h)Σ, A〉

]
,

where h is a symmetric tensor satisfying hΣ = 0, δ̄h = 0 and ‖h‖W 2,p(Ω,ḡ) ≤ C‖g −

ḡ‖W 2,p(Ω,ḡ) for some constant C = C(Ω, p).

In the following chapter we will investigate the nondegeneracy of domains, and

its relation to scalar curvature rigidity. We also note the following special case of

Theorem 30 for geodesic balls centered at the north pole.

Corollary 31. Suppose Ω = {f ≥ c}, with all other hypotheses as above. Then

2FΩ(g) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
(d trh)2 + |h|2 + (trh)2

)

+

(√
1− c2 − nc2

√
1− c2

)∫
Σ

(h× h)(N,N)

+

(√
1− c2 +

(n+ 1)c2

2
√

1− c2

)∫
Σ

h(N,N)2.
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The remainder of the chapter is devoted to the proof of Theorem 30; we begin

by explicitly computing the first and second variations of the scalar curvature and

mean curvature terms arising in the definition of FΩ.

2.2 Scalar curvature variations

We denote the first and second derivatives of the scalar curvature operator, g 7→

R(g) by Lg and Qg, respectively. (The chosen letters correspond to “linear” and

“quadratic”.) Explicitly, these are defined as

Lg(h) :=
d

dt

∣∣∣∣
t=0

R(g + th),

Qg(h) :=
d2

dt2

∣∣∣∣
t=0

R(g + th).

It was observed in Section 1.5 that Lg(h) = δ2h − ∆(trh) − 〈h,Ric〉. In this

section we give an explicit formula for the second variation, Qg(h). This formula was

stated without proof in Fischer and Marsden (1975).

Proposition 32. The second variation of scalar curvature is given by

Qg(h) =− 1

2
|∇h|2 + 2〈h× h,Ric〉 − 1

2
(d trh)2 +∇khij∇ihjk

+ 2〈h,Hess(trh)〉 − 2〈δh, d(trh)〉+ ∆|h|2 − 2δ2(h× h).

The proof consists of a series of elementary, though tedious, variational computa-

tions. We assume throughout that g(t) is a smooth one-parameter family of Rieman-

nian metrics evolving with speed h. For convenience we define G(h) := h− 1
2
(trh)g.

It follows immediately that δG(h) = δh+ 1
2
d(trh).

Lemma 33. Let f(t) be a smooth one-parameter family of functions. Then

∂

∂t
∆f = ∆

(
∂f

∂t

)
− 〈h,Hess f〉+ 〈δG(h), df〉.
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Proof. In local coordinates we have ∆f = gij∇i∇jf = gij(∂i∂jf −Γkij∂kf). Differen-

tiating, we obtain

∂

∂t
∆f = −hij

(
∂i∂jf − Γkij∂kf

)
+ gij

(
∂i∂j

(
∂f

∂t

)
− Γkij∂k

(
∂f

∂t

)
−

(
∂Γkij
∂t

)
∂kf

)

= ∆

(
∂f

∂t

)
− 〈h,Hess f〉 − gij

∂Γkij
∂t

∂kf.

By Lemma 27 the final term is equal to

−g
ijgkl

2
(∇ihjl +∇jhil −∇lhij) ∂kf = 〈δh, df〉+

1

2
〈d(trh), df〉.

This completes the proof.

We next compute the evolution of the divergence operator acting on one-forms.

Lemma 34. Let ω(t) be a smooth one-parameter family of one-forms. Then

∂

∂t
δω = δ

(
∂ω

∂t

)
+ 〈h,∇ω〉 − 〈δG(h), ω〉.

Proof. We begin with the local formula δω = −gij∇iωj = −gij(∂iωj − Γkijωk) and

differentiate as in the proof of Lemma 33 to obtain

∂

∂t
δω = δ

(
∂ω

∂t

)
+ hij∇iωj − gij

∂Γkij
∂t

ωk.

We complete the proof by applying Lemma 27 to see that

gij
∂Γkij
∂t

ωk = 〈δG(h), ω〉.

Finally, we examine the divergence and trace of (0, 2)-tensors.
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Lemma 35. Let A(t) be a smooth one-parameter family of symmetric (0, 2)-tensors.

Then

∂

∂t
trA = tr

(
∂A

∂t

)
− 〈h,A〉

and

∂

∂t
δA = δ

(
∂A

∂t

)
− δ(h× A)− 1

2
A (d(trh), ·) +

Aij

2
∇khij.

Proof. The first statement follows immediately upon differentiating trA = gijAij. To

prove the second statement, we begin with the local coordinate expression (δA)k =

−gij∇iAjk = −gij(∂iAjk − ΓlijAkl − ΓlikAjl). As in the proof of Lemma 33, we

differentiate this to obtain

∂

∂t
(δA)k = δ

(
∂A

∂t

)
+ hij∇iAjk + gij

∂Γlij
∂t

Akl + gij
∂Γlik
∂t

Ajl,

and observe that

gij
∂Γlij
∂t

Akl = −A (δG(h), ·) .

By the Leibniz rule we have

hij∇iAjk = ∇ih
ijAjk − Ajk∇ih

ij

= −δ(h× A) + A(δh, ·).

The final term is

gijglm

2
(∇ihkm +∇khim −∇mhik)Ajl =

Aij

2
∇khij,

where we have used the symmetry of h and A to cancel the first and last terms in

parentheses. The statement now follows from combining these expressions.

With these lemmata at our disposal we can differentiate the first term in Lg(h).
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Lemma 36. Let g(t) = g + th. Then

∂

∂t
δ2h =− 1

2
|∇h|2 +

1

2
〈h,Hess(trh)〉 − 〈δh, d(trh)〉

− δ2(h× h)− 1

2
〈h,∆h〉+ 〈h,∇(δh)〉 − |δh|2

Proof. We first apply Lemma 34 to the one-form ω = δh, to obtain

∂

∂t
δ2h = δ

(
∂

∂t
δh

)
+ 〈h,∇(δh)〉 − 〈δG(h), δh〉.

We then use Lemma 35, with A = h, to compute

∂

∂t
δh = −δ(h× h)− 1

2
h (d(trh), ·) +

hij

2
∇khij.

In local coordinates we have h (d(trh), ·)l = gijhkl∇khij. The divergence of this

term is then given by

−gij(∇lhkl∇khij + hkl∇l∇khij) = 〈δh, d(trh)〉 − 〈h,Hess(trh)〉.

The divergence of hij∇khij is

−∇khij∇khij − hij∇k∇khij = −|∇h|2 − 〈h,∆h〉,

so we see that

δ

(
∂

∂t
δh

)
= −δ2(h× h)− 1

2
〈δh, d(trh)〉+

1

2
〈h,Hess(trh)〉 − 1

2
|∇h|2 − 1

2
〈h,∆h〉.

The proof follows.

We next deal with the ∆(trh) term occurring in Lg(h).

Lemma 37. Let g(t) = g + th. Then

∂

∂t
∆(trh) = −∆|h|2 − 〈h,Hess(trh)〉+ 〈δG(h), d(trh)〉.
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Proof. We let f = trh and apply Lemma 33 to obtain

∂

∂t
∆(trh) = ∆

(
∂

∂t
trh

)
− 〈h,Hess(trh)〉+ 〈δG(h), d(trh)〉.

Now Lemma 35, with A = h, implies

∂

∂t
trh = −|h|2.

The result follows.

The last ingredient in the proof of Proposition 32 is the variation of the curvature

term, 〈h,Ric〉.

Lemma 38. Let g(t) = g + th. Then

∂

∂t
〈h,Ric〉 =− 1

2
〈h,∆h〉 − 1

2
〈h,Hess(trh)〉 − 〈h,∇(δh)〉

− 〈h× h,Ric〉 −Rijklh
ilhjk.

Proof. Using local coordinates we have 〈h,Ric〉 = hijRij. It follows from the equation

hij = gikgjlhkl that

∂

∂t
hij = −hikgjlhkl − gikhjlhkl

= −2(h× h)ij,

hence

∂

∂t
〈h,Ric〉 = −2〈h× h,Ric〉+ 〈h, ∂

∂t
Ric〉.

It follows from Lemma 27 that

−2〈h, ∂
∂t

Ric〉 = 〈h,∆Lh〉+ 〈h,Hess(trh)〉+ 2〈h,∇(δh)〉.
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We also see that

〈h,∆Lh〉 = 〈h,∆h〉+ 2Rijklh
ilhjk − gilhjk (Rijhkl +Rklhij)

= 〈h,∆h〉+ 2Rijklh
ilhjk − 2〈h× h,Ric〉

and the result follows.

We are now prepared to complete the proof of Proposition 32.

Proof. We recall the formula for the first variation, Lg(h) = δ2h−∆(trh)−〈h,Ric〉,

and combine the results of Lemma 36, Lemma 37 and Lemma 38 to obtain

Qg(h) =− 1

2
|∇h|2 + 〈h× h,Ric〉 − 1

2
(d trh)2 + 2〈h,Hess(trh)〉

− 2〈δh, d(trh)〉+ ∆|h|2 − δ2(h× h)

+ 2〈h,∇(δh)〉 − |δh|2 +Rijklh
ilhjk. (2.2)

Using Lemma 26, we rewrite the last three terms:

2〈h,∇(δh)〉 − |δh|2 +Rijklh
ilhjk = ∇khij∇ihjk − δ2(h× h) + 〈h× h,Ric〉.

This completes the proof.

2.3 Mean curvature variations

In this section we derive formulae for the first and second variation of the second

fundamental form and mean curvature of a fixed hypersurface Σ ⊂M , assuming that

the induced metric on Σ is constant. The main result of this section is the following.

Proposition 39. Let g(t) = g + th, with hΣ = 0 and δgh = 0. Then

∂H

∂t
= −1

2
δΣ(h ·N)− 1

2
∇N(trh)

and

∂2H

∂t2
=

[
(h× h)(N,N)− 3

4
h(N,N)2

]
H +

1

2
h(N,N) [δΣ(h ·N) +∇N(trh)] .

at t = 0.
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In this section we frequently use adapted geodesic normal frames, as given by

Lemma 29. For the evolving family of metrics g(t) = g + th, Lemma 27 implies〈
∂

∂t
∇XY, Z

〉
=

1

2
[(∇Xh)(Y, Z) + (∇Y h)(X,Z)− (∇Zh)(X, Y )]

for any time-independent vector fields X, Y and Z. When X and Y are time-

dependent, we instead write〈
∂

∂t
∇, Z

〉
(X, Y ) =

1

2
[(∇Xh)(Y, Z) + (∇Y h)(X,Z)− (∇Zh)(X, Y )]

to avoid confusion.

Lemma 40. If X is tangential to Σ then〈
∂

∂t
∇, X

〉
=

〈
∂

∂t
∇Σ, X

〉
− h(N,X)A.

Proof. Computing with respect to an adapted geodesic normal frame at (p0, t0), we

have

2

〈
∂

∂t
∇, Eγ

〉
(Eα, Eβ) = (∇αh)(Eβ, Eγ) + (∇βh)(Eα, Eγ)− (∇γh)(Eα, Eβ)

= ∇α(h(Eβ, Eγ))− h(∇αEβ, Eγ)− h(Eβ,∇αEγ)

+∇β(h(Eα, Eγ))− h(∇βEα, Eγ)− h(Eα,∇βEγ)

−∇γ(h(Eα, Eβ)) + h(∇γEα, Eβ) + h(Eα,∇γEβ)

= (∇Σ
αh)(Eβ, Eγ) + (∇Σ

βh)(Eα, Eγ)− (∇Σ
γ h)(Eα, Eβ)

− 2h(N,Eγ)A(Eα, Eβ)

as claimed.

Lemma 41. For time-independent vector fields X, Y and Z we have

∂

∂t

〈
∂

∂t
∇XY, Z

〉
= −

〈
∂

∂t
∇XY, h · Z

〉
.
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Proof. We start by writing

2
∂

∂t

〈
∂

∂t
∇XY, Z

〉
= Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

+ Y h(X,Z)− h(∇YX,Z)− h(X,∇YZ)

− Zh(X, Y ) + h(∇ZX, Y ) + h(X,∇ZY ).

Since Xh(Y, Z) and ∇XY −∇YX = [X, Y ] are time-independent (and similarly for

all other permutations), we see that

∂

∂t

〈
∂

∂t
∇XY, Z

〉
= − ∂

∂t
h(∇XY, Z)

= −h
(
∂

∂t
∇XY, Z

)

= −
〈
∂

∂t
∇XY, h · Z

〉

as claimed.

When Z is time-dependent, this becomes

∂

∂t

〈
∂

∂t
∇XY, Z

〉
=

〈
∂

∂t
∇XY,

∂Z

∂t
− h · Z

〉
.

We thus obtain the following variational formulae for the second fundamental form.

Proposition 42. Let g(t) = g + th. Then

∂A

∂t
=

1

2
h(N,N)A+

〈
∂

∂t
∇, N

〉

and

∂2A

∂t2
=

[
(h× h)(N,N)− 5

4
h(N,N)2

]
A

− h(N,N)

〈
∂

∂t
∇, N

〉
− 2

〈
∂

∂t
∇Σ, (h ·N)Σ

〉
.
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We note that this result requires no boundary assumptions on h.

Proof. For any tangential vector fields X and Y we have

∂A

∂t
(X, Y ) = h(∇XY,N) +

〈
∂

∂t
∇XY,N

〉
+

〈
∇XY,

∂

∂t
N

〉
.

Evaluating in an adapted geodesic normal frame at (p0, t0), we find the tensorial

expression

∂A

∂t
(Eα, Eβ) =

[
h(N,N) +

〈
N,

∂

∂t
N

〉]
A(Eα, Eβ) +

〈
∂

∂t
∇αEβ, N

〉
.

We then differentiate the equation |N |2 = 1 to obtain

2

〈
N,

∂

∂t
N

〉
+ h(N,N) = 0,

and the first result follows.

For the second equation, we differentiate the above result and apply Lemma 41

to obtain

∂2A

∂t2
=

[
h

(
N,

∂

∂t
N

)
+

1

4
h(N,N)2

]
A+

〈
∂

∂t
∇, ∂N

∂t
− h ·N +

1

2
h(N,N)N

〉
.

Again using an adapted geodesic normal frame at (p0, t0), we have 〈N,Eα〉 = 0 for

all t, hence 〈
∂N

∂t
, Eα

〉
= −h(N,Eα).

We then can write at time t0

∂N

∂t
=

〈
N,

∂

∂t
N

〉
N +

∑
α

〈
∂N

∂t
, Eα

〉
Eα

= −1

2
h(N,N)N −

∑
α

h(N,Eα)Eα
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and similarly

h ·N = h(N,N)N +
∑
α

h(N,Eα)Eα.

These formulae imply

∂N

∂t
− h ·N +

1

2
h(N,N)N = −h(N,N)N − 2

∑
α

h(N,Eα)Eα

and

h

(
N,

∂

∂t
N

)
= −1

2
h(N,N)2 −

∑
α

h(N,Eα)2

=
1

2
h(N,N)2 − (h× h)(N,N).

The result now follows from Lemma 40.

We now record some computations that will prove useful in evaluating the above

expressions. For any (not necessarily tangential) vector field Z defined on Σ, we let

δΣZ denote the divergence of the tangential part of Z, computed with respect to the

induced metric on Σ. The following result relates this to the full divergence, δZ.

Lemma 43. For any vector field Z on Σ we have

δZ = δΣZ + 〈Z,N〉H − 〈∇NZ,N〉.

Note that setting Z = N immediately yields the formula H = δN .

Proof. In an adapted orthonormal frame we write.

δZ = −
∑
α

〈∇αZ,Eα〉 − 〈∇NZ,N〉.
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To evaluate the first term we write Z = ZΣ + ZN , where ZN := 〈Z,N〉N and

ZΣ := Z−ZN . For the tangential part we have ∇αZΣ = ∇Σ
αZΣ +A(Eα, ZΣ)N , hence

−
∑
α

〈∇αZΣ, Eα〉 = −
∑
α

〈∇Σ
αZΣ, Eα〉

= δΣZ.

Then

−
∑
α

〈∇αZN , Eα〉 = −〈Z,N〉
∑
α

〈∇αN,Eα〉

= 〈Z,N〉H

by Lemma 28.

We use this lemma to derive the following useful formulae.

Lemma 44. If hΣ = 0 and δgh = 0, then

(∇Nh)(N,N) =δΣ(h ·N) + h(N,N)H;

(∇h·Nh)(N,N) =2h(N,N)δΣ(h ·N)− δΣ[h(N,N)h ·N ]

+ h(N,N)2H + 2〈(h× h)Σ, A〉;

2(∇Nh)(N, h ·N) =δΣ[(h× h) ·N ] + 〈h⊗N,∇h〉

+ (h× h)(N,N)H − 〈(h× h)Σ, A〉

at t = 0.

Proof. We proceed by applying Lemma 43 to the vector fields h·N , h(N,N)h·N and

(h×h) ·N respectively. First letting Z = h ·N , we find that δZ = 〈δh,N〉−〈h,∇N〉

and

〈∇NZ,N〉 = (∇Nh)(N,N) + h(N,∇NN)

= (∇Nh)(N,N) + 〈h,∇N〉,
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where in the last line we have used the fact that hΣ = 0. The result then follows

from Lemma 43.

We next consider Z = h(N,N)h ·N , and observe that

δZ = h(N,N)δ(h ·N)−∇h·N(h(N,N))

= h(N,N)〈δh,N〉 − h(N,N)〈h,∇N〉 − ∇h·N(h(N,N)).

The last term can be written as ∇h·N(h(N,N)) = (∇h·Nh)(N,N) + 2h(N,∇h·NN),

with

h(N,∇h·NN) =
∑
α

h(Eα, N)h(N,∇αN) + h(N,N)h(N,∇NN)

= −
∑
αβ

h(Eα, N)h(Eβ, N)A(Eα, Eβ) + h(N,N)h(N,∇NN),

using Lemma 28 in the last line. We recognize that∑
αβ

h(Eα, N)h(Eβ, N)A(Eα, Eβ) = 〈(h× h)Σ, A〉

and thus obtain

δZ = h(N,N)〈δh,N〉 − (∇h·Nh)(N,N)− 3h(N,N)h(N,∇NN)

+ 〈2(h× h)Σ + h(N,N)hΣ, A〉.

We then compute

〈∇NZ,N〉 = h(N,N)〈∇N(h ·N), N〉+ h(N,N)∇N(h(N,N))

= h(N,N)[2(∇Nh)(N,N) + 3h(N,∇NN)]

and apply Lemma 43, together with the formula for (∇Nh)(N,N) derived above, to

obtain the desired result.

Finally, we let Z = (h× h) ·N . Using local coordinates we compute

δZ = −∇i(hijh
jkNk)

= −(∇ihij)h
jkNk − hij(∇ihjk)Nk − hijhjk(∇iNk)

= 〈δh, h ·N〉 − 〈h⊗N,∇h〉 − 〈h× h,∇N〉
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and

〈∇NZ,N〉 = N i∇N(hijh
jkNk)

= N i[(∇Nhij)h
jkNk + hij(∇Nh

jk)Nk + hijh
jk(∇NNk)]

= 2(∇Nh)(N, h ·N) + (h× h)(N,∇NN).

We then note that

〈h× h,∇N〉 =
∑
α

(h× h)(Eα,∇αN) + (h× h)(N,∇NN)

= −〈(h× h)Σ, A〉+ (h× h)(N,∇NN)

by Lemma 28. The result now follows from Lemma 43.

We can now compute the trace term that occurs in the first and second variation

of mean curvature.

Lemma 45. If hΣ = 0 and δgh = 0, then

2 trΣ

〈
∂

∂t
∇, N

〉
= −δΣ(h ·N)− h(N,N)H −∇N(trh)

at t = 0.

Proof. Using adapted orthonormal coordinates, we have

2 trΣ

〈
∂

∂t
∇, N

〉
=
∑
α

2(∇αh)(Eα, N)− (∇Nh)(Eα, Eα)

= −2〈δh,N〉 − 2(∇Nh)(N,N) + (∇Nh)(N,N)−∇N(trh)

= −2〈δh,N〉 − (∇Nh)(N,N)−∇N(trh).

We use Lemma 44 to compute (∇Nh)(N,N) and the proof follows.

Now the proof of Proposition 39 follows from Proposition 42 and Lemma 45.

We record one additional consequence of Lemma 44 that will be useful in the

following section.
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Lemma 46. If hΣ = 0 and δgh = 0, then

〈h⊗N,∇h〉 − 2h(N,∇ trh)−∇N |h|2 =[2h(N,N)2 − 3(h× h)(N,N)]H

− 2h(N,N) [δΣ(h ·N) +∇N(trh)]

− 〈(h× h)Σ, A〉 − 3δΣ[(h× h) ·N ]

at t = 0.

Proof. We first use the fact that hΣ = 0 to obtain

〈h⊗N,∇h〉 =
∑
α

[h(Eα, N)(∇αh)(N,N) + h(Eα, N)(∇Nh)(Eα, N)]

+ h(N,N)(∇Nh)(N,N)

=(∇h·Nh)(N,N) + (∇Nh)(N, h ·N)− h(N,N)(∇Nh)(N,N)

and

〈h,∇Nh〉 = 2
∑
α

h(Eα, N)(∇Nh)(Eα, N) + h(N,N)(∇Nh)(N,N)

= 2(∇Nh)(N, h ·N)− h(N,N)(∇Nh)(N,N).

We then combine this with Lemma 44 to write

−2〈h⊗N,∇h〉 − ∇N |h|2 =− 2(∇h·Nh)(N,N)− 6(∇Nh)(N, h ·N)

+ 4h(N,N)(∇Nh)(N,N)

=− 3〈h⊗N,∇h〉+ 2h(N,N)2H − 3(h× h)(N,N)H

+ δΣ [2h(N,N)h ·N − 3(h× h) ·N ]− 〈(h× h)Σ, A〉.

Finally, we observe that h(N,N) = trh on Σ, so

δΣ[h(N,N)h ·N ] =δΣ[(trh)h ·N ]

=h(N,N)δΣ(h ·N)− h(N,∇Σ trh)

=h(N,N)δΣ(h ·N)− h(N,∇ trh) + h(N,N)∇N(trh)

The desired formula follows upon combining the last two results.
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2.4 Proof of Theorem 30

We will prove Theorem 30 by computing the first and second derivatives of the

functional FΩ, then appealing to the Morse–Palais lemma. The proof of this lemma

is standard, and can be found in Lang (1995).

Lemma 47. Let B be a Banach space, U an open neighborhood of x0 ∈ B, and F :

U → R a function of class Ck+2 with k ≥ 1. Suppose x0 is a nondegenerate critical

point of F . Then there exists a neighborhood V of 0 ∈ B and a Ck diffeomorphism

ξ : V → ξ(V ) ⊂ U such that ξ(0) = x0, and

F (ξ(y)) = F (x0) +
1

2
D2F (x0)(y, y)

for all y ∈ V . Moreover, ξ satisfies Dξ(0) = Id.

We would like to apply this lemma to F (h) := FΩ(ḡ + h) on the space

B := {h ∈ W 2,p : δ̄h = 0 and hΣ = 0}.

Once we establish that 0 is a nondegenerate critical point of F , it will follow that

FΩ(ḡ + ξ(h)) =
1

2
D2FΩ(ḡ)(h, h)

for all h in some W 2,p neighborhood V ⊂ B containing 0. We then use the following

slice theorem to extend this formula to all Riemannian metrics sufficiently close to ḡ.

This is a minor generalization of a result of Brendle and Marques (2010), following

the classic work of Ebin (1968).

Proposition 48. Fix p > n. If ‖g− ḡ‖W 2,p(Ω,ḡ) is sufficiently small, then there exists

a diffeomorphism ϕ : Ω→ Ω such that ϕ|Σ = id, and h := ξ−1(ϕ∗g − ḡ) has δ̄h = 0.

Moreover,

‖h‖W 2,p(Ω,ḡ) ≤ C‖g − ḡ‖W 2,p(Ω,ḡ)

for some constant C = C(Ω, p).
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From this it follows that

FΩ(ϕ∗g) =
1

2
D2FΩ(ḡ)(h, h);

so the proof is completed by an explicit computation of D2FΩ(ḡ)(h, h) for divergence-

free h.

We thus proceed by computing the first and second derivatives of FΩ. These

computations will demonstrate that ḡ is a critical point of FΩ, and additionally

provide the desired formula for D2FΩ(ḡ)(h, h). The chapter then concludes with the

proof of Proposition 48.

We begin by recording some useful integration by parts formulae for ḡ. Though

the results are elementary, we write them out in full to make explicit the chosen sign

conventions for N , δ and ∆. We recall that f satisfies the equation Hess f = −fḡ,

hence −∆f = nf , on Ω.

Lemma 49. Let h be a symmetric (0, 2)-tensor, and u a smooth function, on Ω.

Then ∫
Ω

fδ2h = −
∫

Ω

f(trh) +

∫
Σ

[f〈δh,N〉+ h(∇f,N)] ,

∫
Ω

f∆u = −n
∫

Ω

uf +

∫
Σ

[u∇Nf − f∇Nu] .

If δh = 0 then∫
Ω

f〈h,Hessu〉 = −
∫

Ω

uf(trh) +

∫
Σ

[uh(∇f,N)− fh(∇u,N)] .

Proof. To prove the first statement, we let X = fδh+ h(∇f, ·). Then

δX = fδ2h− 〈df, δh〉+ 〈δh, df〉 − 〈h,Hess f〉

= fδ2h− 〈h,Hess f〉.
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The proof is completed by the observation that 〈h,Hess f〉 = −f(trh).

For the second claim, we let X = udf − fdu. Using the fact that ∆ = −δd, we

compute

δX = f∆u− u∆f.

Since, ∇f = −nf , the result follows.

For the final claim, we let X = h(u∇f − f∇u, ·) and compute

δX = 〈δh, u∇f − f∇u〉+ f〈h,Hessu〉 − u〈h,Hess f〉.

As above, we note that 〈h,Hess f〉 = −f(trh) and the result follows.

Having established these results, we proceed to differentiate the total scalar cur-

vature functional.

Proposition 50. Suppose hΣ = 0 and δ̄h = 0. Then DFΩ(ḡ)(h) = 0 and

D2FΩ(ḡ)(h, h) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
(d trh)2 + |h|2 + (trh)2

)

+

∫
Σ

[
−2h(N,N)h(∇Σf,N) +

(
h(N,N)2 + (h× h)(N,N)

)
∇Nf

]
+

∫
Σ

f

[
1

2
h(N,N)2H − (h× h)(N,N)H − 〈(h× h)Σ, A〉

]
.

Proof. We let gt = ḡ + th. Since |N̄ |−1
ḡ = 1, we have

∂

∂t

∣∣∣∣
t=0

|N̄ |−1
gt

(
Hgt − H̄

)
=
∂H

∂t

∣∣∣∣
t=0

= −1

2
δΣ(h ·N)− 1

2
∇N(trh),

by Proposition 39, hence

DFΩ(ḡ)(h) =

∫
Ω

f Lḡ h−
∫

Σ

f [δΣ(h ·N) +∇N(trh)].
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Then lemma 49 implies∫
Ω

f Lḡ h =

∫
Σ

[f∇N(trh) + h(∇f,N)− h(N,N)∇Nf ].

We observe that

−fδΣ(h ·N) + h(∇f,N)− h(N,N)∇Nf = −δΣ[f(h ·N)]

integrates to zero by Stokes’ theorem, and the first result follows.

To compute the second derivative we first observe the following consequences of

Lemma 49:∫
Ω

fδ2(h× h) = −
∫

Ω

f |h|2 +

∫
Σ

[(h× h)(∇f,N)− f〈h⊗N,∇h〉];

∫
Ω

f∆|h|2 = −n
∫

Ω

f |h|2 +

∫
Σ

[
|h|2∇Nf − f∇N |h|2

]
;

and ∫
Ω

f〈h,Hess(trh)〉 = −
∫

Ω

f(trh)2 +

∫
Σ

[(trh)h(∇f,N)− fh(∇trh,N)] .

In the first equation we have used the fact that 〈δ(h× h), N〉 = −〈h⊗N,∇h〉 when

δh = 0. We next recall from Equation (2.2) that

Qg(h) =− 1

2
|∇h|2 + 〈h× h,Ric〉 − 1

2
(d trh)2 + 2〈h,Hess(trh)〉

+ ∆|h|2 − δ2(h× h) +Rijklh
ilhjk

The spherical metric has curvature tensor Rijkl = gilgjk − gjlgik, hence Rjk = (n −

1)gjk. This implies 〈h × h,Ric〉 = (n − 1)|h|2 and Rijklh
ilhjk = (trh)2 − |h|2. We

thus obtain∫
Ω

fQḡ(h) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
(d trh)2 + |h|2 + (trh)2

)

+

∫
Σ

[
2(trh)h(∇f,N) + |h|2∇Nf − (h× h)(∇f,N)

]
+

∫
Σ

f
[
〈h⊗N,∇h〉 − 2h(∇ trh,N)−∇N |h|2

]
. (2.3)
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To differentiate the boundary terms we write |N̄ |−1
gt = gt(N̄ , N̄)−1/2, from which

it follows that

∂

∂t
|N̄ |−1

gt = −1

2
gt(N̄ , N̄)−3/2h(N̄ , N̄).

Therefore

∂2

∂t2

∣∣∣∣
t=0

|N̄ |−1
gt

(
Hgt − H̄

)
=− h(N,N)

∂H

∂t

∣∣∣∣
t=0

+
∂2H

∂t2

∣∣∣∣
t=0

=

[
(h× h)(N,N)− 3

4
h(N,N)2

]
H

+ h(N,N) [δΣ(h ·N) +∇N(trh)]

by Proposition 39. By combining this with Equation (2.3) and applying Lemma 46,

we see that the combined boundary terms occurring in D2FΩ are given by

2h(N,N)h(∇f,N) + |h|2∇Nf − (h× h)(∇f,N)

+ f [2h(N,N)2 − 3(h× h)(N,N)]H − 2fh(N,N) [δΣ(h ·N) +∇N(trh)]

− f〈(h× h)Σ, A〉 − 3fδΣ[(h× h) ·N ]

+ 2f

[
(h× h)(N,N)− 3

4
h(N,N)2

]
H + 2fh(N,N) [δΣ(h ·N) +∇N(trh)] .

The proof follows from the above formula, together with the decomposition ∇f =

∇Σf + (∇Nf)N , and the observations that

δΣ[f(h× h) ·N ] = fδΣ[(h× h) ·N ]− (h× h)(∇Σf,N)

and

2h(N,N)2 + |h|2 − (h× h)(N,N) = h(N,N)2 + (h× h)(N,N)

on Σ, because hΣ = 0.

This immediately implies 0 is a critical point of F ; it is nondegenerate by as-

sumption on Ω, so the Morse–Palais lemma applies. We finish with the proof of the

slice theorem.
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Proof. (of Proposition 48) We closely follow the approach and notation of Brendle

and Marques (2010). We letM denote the space of W 2,p Riemannian metrics on Ω,

and D the space of W 3,p diffeomorphisms that fix Σ. The tangent spaces of M and

D are given by S, the space of W 2,p symmetric (0, 2)-tensors, and X , the space of

vector fields in W 3,p ∩W 1,p
0 . Additionally, we let Y denote the space of W 1,p vector

fields on Ω.

We then define a map

F : D ×M→ Y

(ϕ, g) 7→ δ̄(ξ−1(ϕ∗g − ḡ)).

Differentiating this with respect to ϕ and evaluating at (id, ḡ), we find

DF (ḡ)(X) = δ̄
(
Dξ−1(0)(LX ḡ)

)
= δ̄ (LX ḡ) ,

where in the last line we have used the fact that ξ(0) = 0 and Dξ(0) = Id.

We next show thatDF (ḡ) : X → Y is an isomorphism; after this is established the

result will follow from the implicit function theorem and the fact that F (id, ḡ) = 0.

It was observed by Brendle and Marques (see also Berger and Ebin (1969)) that

S = {LX ḡ : X ∈ X} ⊕ {h ∈ S : δ̄h = 0},

whence kerDF (ḡ) = {X ∈ X : LX ḡ = 0}. Each Killing vector field on Sn is tangent

to a rotation M ∈ SO(n + 1). If M is not the identity, it can have at most n − 1

eigenvalues equal to 1, hence the set of points in Rn+1 fixed by M is a plane through

the origin of dimension at most n− 1. This plane will intersect Sn in a submanifold

of dimension at most n − 2, hence there is no nontrivial Killing vector field on Sn

that vanishes on a hypersurface. It follows that kerDF (ḡ) is trivial.

We complete the proof by demonstrating surjectivity of DF (ḡ) = 2δ̄δ̄∗. This is

an injective elliptic operator with trivial kernel, so we have that the bilinear form

B(X, Y ) :=

∫
Ω

〈
δ̄∗X, δ̄∗Y

〉
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is strictly coercive over W 1,2
0 . Now let Y ∈ Y . Since p > n > 2, we have Y ∈ L2.

Then the Lax–Milgram lemma (see Folland (1995) for details) implies the existence

of a weak solution X ∈ W 1,2
0 to the problem

2δ̄δ̄∗X = Y.

Since Y ∈ W 1,p, elliptic regularity (Theorem 9.19 of Gilbarg and Trudinger (1983))

implies X ∈ W 3,p, and the proof follows.
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3

Local rigidity theorems

In this Chapter we prove the local rigidity theorems stated in the introduction. To

prove a rigidity theorem on a domain Ω ⊂ Sn, we first show that Ω is nondegenerate

(according to the definition of Chapter 2). We can then apply Theorem 30 to any

metric g suitably close to ḡ, to find a diffeomorphism ϕ such that

2FΩ(ϕ∗g) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
|d trh|2 + |h|2 + (trh)2

)
(3.1)

+ boundary terms.

If g satisfies the inequalities Rg ≥ R̄ and Hg ≥ H̄, then ϕ∗g will also, hence

FΩ(ϕ∗g) ≥ 0. We next show that the right-hand side of Equation (3.1) is negative

definite; since the left-hand side is nonnegative, we conclude that h ≡ 0. Recalling

the proof of Proposition 48, we have h = ξ−1(ϕ∗g − ḡ) and ξ(0) = 0. This implies

ϕ∗g − ḡ = 0, completing the proof.

We therefore must: 1) establish the nondegeneracy of Ω; and 2) show that the

right-hand side of Equation (3.1) is negative definite for any domain Ω on which

we wish to prove a scalar curvature rigidity theorem. Since the right-hand side of

Equation (3.1) is precisely the second derivative D2FΩ(ḡ)(h, h), the nondegeneracy
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of Ω will immediately follow once we show that D2FΩ is negative definite.

Since the interior terms in Equation (3.1) are all negative, the only positive

contributions come from the boundary. In the case of a geodesic ball {f ≥ c}, it was

observed by Brendle and Marques (2010) that the boundary terms are nonpositive

provided

c ≥ 4

n+ 3
.

We will see that it is possible to obtain a stronger result by utilizing the negative

interior terms, since we only need the sum of the interior and boundary terms to be

nonpositive. More specifically, we show in the next section that the boundary terms

can be controlled by the interior terms; when the control is good enough (as will be

the case when Ω is sufficiently small) it will follow that D2FΩ is negative definite, as

desired.

We next generalize these results to domains in the hemisphere that are not

geodesic balls. Here we require additional control on the extrinsic geometry of the

boundary (which is no longer totally umbilic as it was for a geodesic ball). In partic-

ular, we prove a local rigidity theorem for domains Ω ⊂ {f ≥ c} having “sufficiently

large” mean curvature (with respect to ḡ), where the precise notion of sufficiently

large depends on c and the smallest eigenvalue of the second fundamental form (again

computed with respect to ḡ).

In the final section we take a more systematic approach to the problem of finding

the largest domain on which the local rigidity theorem is true. We prove some

existence results for a related variational problem, and make a conjecture relating

degenerate geodesic balls to the index of a symmetric elliptic operator on Ω.
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3.1 Weighted boundary estimates for geodesic balls

We begin by estimating the h(N,N)2 boundary term that arises in Corollary 31. We

are interested in finding an estimate of the form∫
Σ

h(N,N)2 ≤ K

∫
Ω

f

(
1

2
|∇h|2 +

1

2
|d trh|2 + |h|2 + (trh)2

)
for K > 0. In the next section it will be shown that such an estimate yields a

rigidity statement for Ω, provided K is sufficiently small. We are thus interested in

finding, on a given domain Ω, the smallest constant K such that the above inequality

holds for all symmetric, divergence-free tensors h. In this section we establish such

an inequality for any geodesic ball {f ≥ c} with c > 0, from which the proof of

Theorem 22 will readily follow.

Proposition 51. Let h be a divergence-free, symmetric (0, 2)-tensor on Ω = {f ≥ c}.

Then
√

1− c2

∫
Σ

(trh)h(N,N) ≤
∫

Ω

(
w

2

√
1− f 2|h|2 + f(trh)2 +

1

2w

√
1− f 2|d trh|2

)
for any positive function w ∈ C0(Ω).

Proof. Consider the one-form X = (trh)h · ∇f . On Σ we have ∇f =
√

1− c2N ,

hence

〈X,N〉 =
√

1− c2(trh)h(N,N).

Using the fact that δh = 0, we compute

δX = −h(∇f,∇ trh)− (trh)〈h,Hess f〉

= f(trh)2 − h(∇f,∇ trh),

where we have recalled that Hess f = −fg. We apply the Cauchy–Schwartz inequal-

ity to the second term to obtain

−h(∇f,∇ trh) ≤ |∇f ||h||d trh|

=
√

1− f 2|h||d trh|.
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Finally, we apply the arithmetic-geometric mean inequality, 2ab ≤ λa2 + (1/λ)b2, at

each point x ∈ Ω, with a = |h|(x), b = |d trh|(x), and λ = w(x). The result follows

from the divergence theorem.

If the tangential part of h vanishes on Σ, then trh = h(N,N), so the above

inequality, with w =
√

2, implies

√
1− c2

∫
Σ

h(N,N)2 ≤
∫

Ω

(√
1− c2

2

(
|h|2 +

1

2
|d trh|2

)
+ f(trh)2

)
. (3.2)

3.2 Local rigidity for geodesic balls

We are now in a position to complete the proof of Theorem 22. Recall that g is a

metric on Ω with gΣ = ḡΣ, Rg ≥ R̄ and Hg ≥ H̄. Assuming that g is sufficiently

close to ḡ in W 2,p, we have from Corollary 31 that

2FΩ(ϕ∗g) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
(d trh)2 + |h|2 + (trh)2

)

+

(√
1− c2 − nc2

√
1− c2

)∫
Σ

(h× h)(N,N)

+

(√
1− c2 +

(n+ 1)c2

2
√

1− c2

)∫
Σ

h(N,N)2.

for some diffeomorphism ϕ with ϕ|Σ = id, and some symmetric, divergence-free

tensor h with hΣ = 0. Diffeomorphism invariance of the scalar curvature immediately

implies Rϕ∗g = ϕ∗Rg ≥ R̄ at each point in Ω. The following elementary lemma proves

that Hϕ∗g ≥ H̄.

Lemma 52. Let Σ ⊂ M be a smoothly embedded submanifold, and ϕ : M → M a

diffeomorphism such that ϕ(Σ) = Σ. Then Hϕ∗g = ϕ∗Hg on Σ for any Riemannian

metric g on M .

Proof. For convenience, we let g̃ = ϕ∗g. Fix p ∈ Σ, and let E1, . . . , En = Ng be

an adapted g-orthonormal basis in a neighborhood of p. Then the vector fields
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Ẽi = (ϕ−1)∗Ei form a g̃-orthonormal basis in a neighborhood of ϕ−1(p). Since ϕ

maps Σ into Σ, we see that Ẽ1, . . . , Ẽn−1 are tangential vector fields, hence Ẽn = Ng̃,

the g̃-unit normal. We compute

Hg̃(ϕ
−1(p)) = −

n∑
i=1

g̃
(
∇̃Ẽi

Ñ , Ẽi

)
(ϕ−1(p))

= −
n∑
i=1

g
(
ϕ∗

(
∇̃Ẽi

Ñ
)
, ϕ∗

(
Ẽi

))
(p)

= −
n∑
i=1

g (∇EiN,Ei) (p)

= Hg(p)

and the result follows.

It follows immediately that FΩ(ϕ∗g) ≥ 0, hence

0 ≤D2FΩ(ḡ)(h, h)

=−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
|d trh|2 + |h|2 + (trh)2

)

+

(√
1− c2 − nc2

√
1− c2

)∫
Σ

(h× h)(N,N)

+

(√
1− c2 +

(n+ 1)c2

2
√

1− c2

)∫
Σ

h(N,N)2.

Since we are assuming that c2 ≥ 1
n+1

, and h(N,N)2 ≤ (h × h)(N,N) by definition,

the first boundary term satisfies(√
1− c2 − nc2

√
1− c2

)∫
Σ

(h× h)(N,N) ≤
(√

1− c2 − nc2

√
1− c2

)∫
Σ

h(N,N)2

Combining this with Equation (3.2), we find that

D2FΩ(ḡ)(h, h) ≤ −
∫

Ω

f

(
1

2
|∇h|2 +

1

2
|d trh|2 + |h|2 + (trh)2

)

+

(
2
√

1− c2 − (n− 1)c2

2
√

1− c2

)∫
Ω

[
1√
2

(
|h|2 +

1

2
|d trh|2

)
+

f√
1− c2

(trh)2

]
.
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If c is chosen to satisfy the inequalities

c+
1√
2

(
(n− 1)c2

2
√

1− c2
− 2
√

1− c2

)
≥ 0 (3.3)

1 +
1√

1− c2

(
(n− 1)c2

2
√

1− c2
− 2
√

1− c2

)
≥ 0, (3.4)

then

D2FΩ(ḡ)(h, h) ≤ −1

2

∫
Ω

[
f |∇h|2 + 2(f − c)|h|2

]
.

This is nonpositive for all h because f ≥ c in Ω. Moreover, if D2FΩ(ḡ)(h, h) = 0

then ∇h = 0 and (f − c)|h|2 = 0 in Ω, hence h ≡ 0. Thus D2FΩ(ḡ) is negative

definite.

The following lemma completes the proof of Theorem 22.

Lemma 53. Inequalities (3.3) and (3.4) are satisfied when

c2 ≥

{
2

n+1
if n ≤ 5,

4
(

4+n−
√

2n−1
n2+6n+17

)
if n > 5.

Proof. We start by rearranging (3.3) into the equivalent form

4− (n+ 3)c2 ≤ 2
√

2c
√

1− c2.

It is easy to verify that the function u(x) = 2
√

2x
√

1− x2 + (n + 3)x2 − 4 has

u(0) < 0, and u(x) > 0 for x ≥ 2√
n+3

. We claim that u has precisely one root, x0, in

the interval [0, 1], hence u(x) ≥ 0 for all x ≥ x0. To see this, we square the equation

4− (n+ 3)x2 = 2
√

2x
√

1− x2 to find the following quadratic equation (in z = x2):

(n2 + 6n+ 17)z2 − 8(n+ 4)z + 16 = 0.

After some simplification, we find the roots

z± = 4

(
n+ 4±

√
2n− 1

n2 + 6n+ 17

)
.
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A simple computation shows that z+ ≥ 4/(n+ 3), hence u(
√
z+) > 0. It follows that

the desired root is x0 =
√
z−.

Similarly, we find that (3.4) is satisfied precisely when c2 ≥ 2
n+1

. A straightfor-

ward computation shows that

4

(
4 + n−

√
2n− 1

n2 + 6n+ 17

)
≥ 2

n+ 1
,

exactly when n ≥ 5 (with equality for n = 5), and the proof follows.

3.3 Rigidity for arbitrary domains in the hemisphere

We next come to the proof of Theorem 23, for nonspherical domains Ω ⊂ Sn+. We

recall that Ω ⊂ {f ≥ c} and

H̄ ≥ 1

2c

(
−λ+ 5

√
1− c2 +

√
λ2 + 6λ

√
1− c2 + 17(1− c2)

)
(3.5)

on Σ, where λ is some function satisfying Ā ≥ λḡ. We emphasize, as above, that

these are bounds on the extrinsic geometry of Σ computed with respect to ḡ, which

ensure that the local rigidity theorem is true for any metric g on Ω having Rg ≥ R̄

and Hg ≥ H̄.

Proof. (of Theorem 23) Following the proof of Theorem 22, it suffices to prove that

D2FΩ(ḡ) is negative definite on the space of divergence-free tensors with hΣ = 0. We

have from Theorem 30 that

D2FΩ(ḡ)(h, h) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
(d trh)2 + |h|2 + (trh)2

)

+

∫
Σ

[
−2h(N,N)h(∇Σf,N) +

(
h(N,N)2 + (h× h)(N,N)

)
∇Nf

]
+

∫
Σ

f

[
1

2
h(N,N)2H − (h× h)(N,N)H − 〈(h× h)Σ, A〉

]
.
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For convenience we set X = (h ·N)Σ, so that (h× h)(N,N) = h(N,N)2 + |X|2. We

then have

−2h(N,N)h(∇Σf,N) ≤ 2h(N,N)|X||∇Σf |

≤ a
√

1− c2h(N,N)2 +

√
1− c2

a
|X|2

for any positive function a, by the arithmetic-geometric mean inequality. For the

remaining boundary terms we have(
h(N,N)2 + (h× h)(N,N)

)
∇Nf ≤

(
2h(N,N)2 + |X|2

)√
1− c2

and

f

[
1

2
h(N,N)2H − (h× h)(N,N)H

]
= −fH

[
1

2
h(N,N)2 + |X|2

]

≤ −cH
[

1

2
h(N,N)2 + |X|2

]

because H ≥ 0. (This is the case because H ≥ H̄, and (3.5) implies H̄ ≥ 0.) Finally,

we observe that

〈(h× h)Σ, A〉 = A(X,X)

≥ λ|X|2.

It follows that the boundary terms are bounded above by[
a
√

1− c2 + 2
√

1− c2 − c

2
H
]
h(N,N)2 +

[√
1− c2

a
+
√

1− c2 − cH − λ
]
|X|2;

this expression will be nonpositive provided the inequalities

cH ≥ (2a+ 4)
√

1− c2 (3.6)

and

cH ≥ (1 + a−1)
√

1− c2 − λ (3.7)
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are both satisfied. Since a is arbitrary, we should choose it to minimize

max
(

(2a+ 4)
√

1− c2, (1 + a−1)
√

1− c2 − λ
)

;

this yields the weakest possible lower bound on H that ensures inequalities (3.6) and

(3.7) are both satisfied. Since (2a + 4)
√

1− c2 is an increasing function of a and

(1 + a−1)
√

1− c2 − λ is decreasing, the maximum of these two quantities will be

minimized when they are equal:

(2a+ 4)
√

1− c2 = (1 + a−1)
√

1− c2 − λ.

This is equivalent to the quadratic equation

2
√

1− c2a+
(
λ+ 3

√
1− c2

)
a−
√

1− c2 = 0

which has unique positive solution

a =
−
(
λ+ 3

√
1− c2

)
+
√
λ2 + 6λ

√
1− c2 + 17(1− c2)

4
√

1− c2
.

We use this to compute (2a+ 4)
√

1− c2 and the result follows.

3.4 Optimal domains and Morse theory

In this section we study more carefully the bilinear operator D2FΩ(ḡ) in the case

that Ω is a geodesic ball. We recall that

D2FΩ(ḡ)(h, h) =−
∫

Ω

f

(
1

2
|∇h|2 +

1

2
|d trh|2 + |h|2 + (trh)2

)

+

(√
1− c2 − nc2

√
1− c2

)∫
Σ

|X|2

+

(
2
√

1− c2 − (n− 1)c2

2
√

1− c2

)∫
Σ

h(N,N)2,

where X = (h · N)Σ. It was shown above that the local scalar curvature rigidity

theorem holds on Ω provided that D2FΩ(ḡ) is negative definite, or equivalently that
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the bilinear form B := −D2FΩ(ḡ) is positive definite. For each geodesic ball Ω =

{f ≥ c} we define the spaces

Xc :=
{
h ∈ W 1,2 : ‖h‖L2 = 1

}
X̂c :=

{
h ∈ W 1,2 : δ̄h = 0, hΣ = 0 and ‖h‖L2 = 1

}
and set

µ(c) := inf {B(h, h) : h ∈ Xc} ,

µ̂(c) := inf
{
B(h, h) : h ∈ X̂c

}
.

Our goal is then to investigate the conditions under which µ̂(c) > 0. Since µ̂(c) ≥

µ(c), we can obtain rigidity results from the condition µ(c) > 0, but they may not

be as strong as those derived from µ̂. However, we mostly focus on µ to simplify the

analysis.

For convenience we define

α(c) :=
nc2

√
1− c2

−
√

1− c2

β(c) :=
(n− 1)c2

2
√

1− c2
− 2
√

1− c2

so that B can be written

B(h, h) =

∫
Ω

f

(
1

2
|∇h|2 +

1

2
|d trh|2 + |h|2 + (trh)2

)

+ α(c)

∫
Σ

|X|2 + β(c)

∫
Σ

h(N,N)2.

It is clear that µ̂(c) > 0 for any value of c having both α(c) ≥ 0 and β(c) ≥ 0.

This occurs precisely when

c ≥ 2√
n+ 3

;
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Figure 3.1: Boundary coefficients α(c) and β(c) plotted as functions of the height
c of the domain Ω = {f ≥ c}, in the case n = 3.

this is the result of Brendle and Marques (2010). Figure 3.1 illustrates the dependence

of α and β on c when n = 3. In particular, we see that α and β are monotone

increasing, and are both positive when c ≥
√

2
3
≈ 0.81.

Having defined µ and µ̂, we next reinterpret the main estimate used in the proof

of Theorem 22.

Proposition 54. If c satisfies the bound of Theorem 22, then µ̂(c) > 0.

Proof. In the proof of Theorem 22 we found that

B(h, h) ≥ 1

2

∫
Ω

[
f |∇h|2 + 2(f − c)|h|2

]
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for all h ∈ X̂c, so µ̂(c) is certainly nonnegative. Now suppose µ̂(c) = 0, so there

exists a sequence {hi}∞i=1 in X̂c with B(hi, hi)→ 0 as i→∞. Since∫
Ω

|∇h|2 ≤ 1

c

∫
Ω

f |∇h|2 ≤ 2

c
B(h, h)

we see that the sequence {hi} is bounded in W 1,2. It follows that there is a weakly

convergent subsequence

hi ⇀ v in W 1,2(Ω),

with hi → v in L2(Ω). Since norms are lower semicontinuous with respect to weak

convergence, we conclude that the functional

F (h) :=
1

2

∫
Ω

[
f |∇h|2 + 2(f − c)|h|2

]
is lower semicontinuous with respect to weak W 1,2 convergence. Since F (h) ≤

B(h, h), we then have

F (v) ≤ lim inf F (hi)

≤ lim inf B(hi, hi)

= 0,

hence v = 0. However, we also have hi → v in L2, and ‖hi‖L2 = 1 for all i. This

implies ‖v‖L2 = 1, a contradiction.

In particular, we see from the above proposition that µ̂(c) > 0 when c is suffi-

ciently large. Since the local rigidity theorem fails for the entire hemisphere by the

work of Brendle et al. (2010), we must have µ̂(0) ≤ 0.

We now turn our focus to the simpler quantity µ(c). A straightforward variational

computation, together with elliptic regularity, yields the following properties that

must be satisfied by any minimizer of B.
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Proposition 55. Let c ∈ (0, 1). Then h ∈ Xc satisfies B(h, h) = µ(c) if and only if

it is a smooth solution of the boundary-value problem

δ (f∇ [h+ (trh)g]) = 2µ(c)h in Ω,

c∇N [h+ (trh)g] = α(c) [X ⊗N +N ⊗X] + 2β(c)h(N,N)N ⊗N on Σ,

where X = (h ·N)Σ.

Proof. Let v ∈ Xc. By assumption, the function

σ(t) :=
B(h+ tv, h+ tv)

‖h+ tv‖2
L2

satisfies σ(0) = µ(c) and σ′(0) = 0. Differentiating, we find that

0 =

∫
Ω

f

(
1

2
〈∇h,∇v〉+

1

2
〈∇ trh,∇ tr v〉+ 〈h, v〉+ (trh)(tr v)

)

+

∫
Σ

[α(c) 〈(h ·N)Σ, (v ·N)Σ〉+ β(c)h(N,N)v(N,N)]− µ(c)

∫
Ω

〈h, v〉 .

We observe the integration by parts formulae∫
Ω

f 〈∇h,∇v〉 = −
∫

Ω

(f 〈∆h, v〉+ 〈∇∇fh, v〉)− c
∫

Σ

〈∇Nh, v〉 ,∫
Ω

f 〈∇ trh,∇ tr v〉 = −
∫

Ω

[f(∆ trh) tr v + (∇∇f trh) tr v]− c
∫

Σ

(∇N trh) tr v,

to conclude that, because v was arbitrary,

f∆ [h+ (trh)g] +∇∇f [h+ (trh)g]− 2 [h+ (trh)g] = −2µ(c)h

in Ω. We rewrite this as

δ (f∇ [h+ (trh)g]) = 2µ(c)h.

We similarly find

c∇N [h+ (trh)g] = α(c) [X ⊗N +N ⊗X] + 2β(c)h(N,N)N ⊗N
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on the boundary, hence h is a weak solution to the stated boundary-value problem.

Since we have

B(h, v) = µ(c)(h, v)L2

for all v ∈ W 1,2, the smoothness of h will follow from elliptic regularity (Theorem

7.32 of Folland (1995)) once the coercivity of B over W 1,2(Ω) has been established.

Thus we must show that the estimate

B(h, h) ≥ C‖h‖W 1,2 − λ‖h‖L2

holds for all h ∈ W 1,2, for some constants C > 0 and λ ∈ R.

Since f ≥ c > 0 in Ω, the only concern is the boundary terms occurring in the

definition of B. We assume at least one of α(c) and β(c) is negative, as the result is

trivial otherwise.

Recalling that ∇f =
√

1− c2N on Σ, we define the one-form

ω := h(∇f,∇f)h(∇f, ·)

such that ω(N) = (1−c2)3/2h(N,N)2 on Σ. We then use the fact that both |∇f | and

∆f are bounded above and below (away from zero), together with the arithmetic-

geometric mean inequality, to find that

|δω| ≤ K
(
|h|2 + |h||∇h|

)
≤ K

(
1 + 4ε

4ε
|h|2 + ε|∇h|2

)
for some positive constant K = K(n, c), and any ε > 0. Now, assuming α(c) < 0,

the divergence theorem implies

α(c)

∫
Σ

h(N,N)2 ≥ K ′
∫

Ω

(
1 + 4ε

4ε
|h|2 + ε|∇h|2

)
for some negative constant K ′ depending only on n and c. If α(c) ≥ 0 the same

estimate holds trivially with K ′ = 0. We similarly find that

β(c)

∫
Σ

|X|2 ≥ K ′′
∫

Ω

(
1 + 4ε

4ε
|h|2 + ε|∇h|2

)
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for some nonpositive constant K ′′. Discarding the trace terms in B, we have

B(h, h) ≥
∫

Ω

{[ c
2

+ ε(K ′ +K ′′)
]
|∇h|2 +

[
c+ (K ′ +K ′′)

(
1 + 4ε

4ε

)]
|h|2
}

for any positive ε. We then choose ε sufficiently small to ensure

c

2
+ ε(K ′ +K ′′) > 0

and the desired estimate follows.

Better understanding of local scalar curvature rigidity phenomena should result

from a careful study of the above boundary-value problem—in particular the case

µ(c) = 0, as this is the critical point beyond which our methods no longer apply. It

is thus important to establish that minimizers in fact exist, as we now verify.

Proposition 56. For each c ∈ (0, 1) there exists h ∈ Xc satisfying B(h, h) = µ(c).

Proof. We construct a minimizer by the direct method in the calculus of variations.

We thus begin by choosing a sequence {hi} ∈ Xc with B(hi, hi)→ µ(c). Without loss

of generality we can assume that B(hi, hi) ≤ µ(c) + 1 for all i. Then the coercivity

estimate found in the proof of Proposition 55 implies

C‖hi‖W 1,2 ≤ B(hi, hi) + λ‖hi‖L2

≤ 1 + λ+ µ(c)

for all i, so the sequence {hi} is bounded in W 1,2. It follows that there is a subse-

quence such that

hi ⇀ h weakly in W 1,2,

hi → h strongly in L2,

for some h ∈ W 1,2. We next claim that B is weakly lower semicontinuous; it follows

from this that

B(h, h) ≤ lim inf B(hi, hi)

= µ(c).
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Because hi converges to h strongly in L2, we have ‖h‖L2 = 1; this means h ∈ Xc, and

so B(h, h) ≥ µ(c). Combining the two previous inequalities, we find that B(h, h) =

µ(c) as desired.

It thus remains to establish the weak lower semicontinuity ofB. As in the previous

proposition, the only difficulty comes from the boundary terms, due to the unknown

sign of the coefficients α(c) and β(c). Since norms are lower semicontinuous, we find

immediately that the interior terms∫
Ω

f

(
1

2
|∇h|2 +

1

2
|d trh|2 + |h|2 + (trh)2

)

have the desired continuity property. We will deal explicitly with the h(N,N)2

boundary term; the |X|2 term is dispensed in a similar fashion. As in Proposition

55 we apply the divergence theorem to the one-form

ω := h(∇f,∇f)h(∇f, ·)

to find

(1− c2)3/2

∫
Σ

h(N,N)2 =

∫
Ω

δω.

The divergence of ω will involves terms of the form h ∗ h and h ∗ ∇h. Specifically,

there are no terms quadratic in ∇h. The weak lower semicontinuity of the boundary

term is then an immediate consequence of the following lemma, applied to xi = ∇hi

and yi = hi.

Lemma 57. Consider sequences {xi} and {yi} in a Hilbert space H such that xi ⇀ x

weakly in H and yi → y strongly in H. Then

〈xi, yi〉 → 〈x, y〉

as i→∞.
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Proof. We begin by writing

〈xi, yi〉 − 〈x, y〉 = 〈xi, yi − y〉+ 〈xi − x, y〉 .

Now the weak convergence of {xi} implies 〈xi − x, y〉 → 0. Since weakly convergent

sequences are bounded, we have ‖xi‖ ≤M for all i, hence

|〈xi, yi − y〉| ≤M‖yi − y‖ → 0

by the Cauchy–Schwartz inequality. The result follows.
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4

Rigidity for nonsmooth Euclidean domains

The main goal of this chapter is to prove a version of the Miao–Shi–Tam theorem

for compact manifolds with nonsmooth Riemannian metrics. We are interested in

metrics on the unit ball that have the appropriate boundary behavior, but are a

priori only known to be of class C1, and as such do not have well-defined curvature.

We consider limits of smooth metrics with nonnegative curvature, with the following

result.

Theorem 58. Let gi be a sequence of smooth Riemannian metrics on the unit ball

B ⊂ Rn, with Ric(gi) ≥ 0 and gi → g in C1,α(B) for some 0 < α < 1. If g agrees

with the flat Euclidean metric, g0, in some neighborhood of ∂B, then g is smoothly

isometric to g0. Moreover, if Ric(gi) ≤ C for all i, then gi → g in W 2,p(B) for any

p ≥ 1.

The boundary conditions in the above theorem are likely not optimal. Similar

conclusions should be possible with weaker assumptions on the boundary behavior of

g, expressed in terms of the mean curvature or second fundamental form. However,

the above result suffices for the application of the next chapter, in which we require
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W 2,p convergence of the sequence for some p > n.

Before moving on, we note the following theorem, which also deals with curvature

rigidity in the case of a possibly nonsmooth limit.

Theorem 59. (Bray and Finster (2002)) Suppose {gi} is a sequence of smooth,

complete, asymptotically flat metrics on M3 with nonnegative scalar curvature and

total masses {mi} which converge to a (possibly non-smooth) limit metric g in the

C0 sense. Let U be the interior of the set of points where this convergence of metrics

is locally C3 and nondegenerate. Then if the metrics {gi} have uniformly positive

isoperimetric constants and their masses {mi} converge to zero, the limit metric g

is flat in U .

By contrast with Theorem 58, this theorem controls the interior geometry in terms

of the ADM mass, rather than the boundary geometry of a compact domain. The

rigidity statement, however, requires C3 convergence, and as such is not applicable

for the considerably weaker case of C1,α convergence considered here.

4.1 A nonsmooth Bochner-type estimate

In this section we derive a Bochner-type estimate for C1 metrics. This arises from

the classical Bochner formula, and a straightforward limiting argument.

Proposition 60. Let g be a Riemannian metric of class C1, on a domain Ω with

smooth boundary Σ. Suppose there exists a sequence of smooth metrics gi, each having

Ric(gi) ≥ 0, with gi → g in C1(Ω). Then for any g-harmonic function u ∈ C2(Ω)

we have ∫
Ω

|∇du|2 +
1

2

∫
Σ

∇N |du|2 ≤ 0,

where N denotes the inward unit normal to Σ.
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Proof. We let η = du for convenience. Then for each gi, the Bochner formula for

one-forms says that

∆Hη = ∇∗∇η + Ric(η, ·),

where ∆H = dd∗+d∗d denotes the Hodge Laplacian. We then take the inner product

with η and integrate, to find∫
Ω

〈∆Hη, η〉 ≥
∫

Ω

〈∇∗∇η, η〉 , (4.1)

for each gi, using the fact that Ric ≥ 0. Integration by parts yields∫
Ω

〈∇∗∇η, η〉 =

∫
Ω

|∇η|2 +

∫
Σ

〈∇Nη, η〉

and ∫
Ω

〈dd∗η, η〉 =

∫
Ω

|d∗η|2 −
∫

Σ

(d∗η) 〈η,N〉

=

∫
Ω

(∆u)2 +

∫
Σ

(∆u)∇Nu

where we have recalled that d∗η = d∗du = −∆u. Since dη = d2u = 0, we find from

Equation (4.1) that∫
Ω

(∆u)2 +

∫
Σ

(∆u)∇Nu ≥
∫

Ω

|∇du|2 +

∫
Σ

〈∇Ndu, du〉

for all i. The terms in the above inequality depend continuously on the metric and its

first derivatives, so we can take the limit i→∞ to conclude that this inequality also

holds for the limiting metric g. Since ∆gu = 0 by assumption, the result follows.

The following corollary gives the inequality needed to prove Theorem 58. In this

case g agrees with g0 in some neighborhood of ∂B, so it can be extended to a C1,α

metric g̃ on Rn.
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Corollary 61. Consider {gi} and g as in Theorem 58, and let g̃ denote the extension

of g to Rn. Then for any g̃-harmonic function u we have∫
Ω

|∇du|2 +
1

2

∫
∂Ω

∇N |du|2 ≤ 0

on any domain Ω ⊂ Rn containing B.

Proof. We let N denote the inward unit normal to ∂Ω and ν the inward unit normal

to ∂B. Then Proposition 60 implies∫
B

|∇du|2 +
1

2

∫
∂B

∇ν |du|2 ≤ 0.

Since g̃ is flat outside B, we can apply the classical Bochner formula and integrate

over Ω \B to obtain

0 =

∫
Ω\B
|∇du|2 +

1

2

∫
∂Ω

∇N |du|2 −
1

2

∫
∂B

∇ν |du|2 .

We then sum these equations and the result follows.

4.2 Proof of rigidity

In this section we prove the first half of Theorem 58. The proof uses some ideas from

the theory of weighted Hölder spaces on asymptotically flat manifolds, as reviewed

in Appendix B.

Since g agrees with g0 near the boundary, we can trivially extend it to a C1,α

metric on Rn that is flat outside of a bounded set. Thus the extended metric, g̃, is

asymptotically flat and has

mADM(g̃) = 0.

We let x1, . . . , xn denote the standard Euclidean coordinates on Rn, and fix a constant

δ > 0. It follows from Theorem 83 that there exist functions u1, . . . , un of class C2,α
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satisfying

∆ua = 0 in Rn,

ua − xa ∈ C2,α
δ (Rn),

for 1 ≤ a ≤ n. Elliptic regularity implies that the functions ua are in fact smooth

outside of a bounded set.

We next apply Corollary 60 to each ua and sum to find

n∑
a=1

∫
BR

|∇dua|2 +
1

2

n∑
a=1

∫
SR

∇N |dua|2 ≤ 0,

where BR ⊂ Rn is a geodesic ball of radius R, with boundary SR. We then have

from Lemma 84 that

lim
R→∞

(
n∑
a=1

∫
SR

∇N |dua|2
)

= −c−1
n mADM(g̃)

for some positive constant cn, and so∫
Rn
|∇dua|2 = 0

for 1 ≤ a ≤ n. Thus the one-forms du1, . . . , dun are parallel. Now the condition

ua − xa ∈ C2,α
−δ (Rn) implies

lim
|x|→∞

〈
dua, dub

〉
(x) = δab,

so we in fact have that du1, . . . , dun are globally orthonormal.

We have thus far produced a set of globally defined coordinates in which gij = δij.

However, these coordinates, and hence the resulting diffeomorphism between g̃ and

g0, are only known to be of class C2,α. Thus it remains to be shown that g̃ is smooth.

This is an immediate consequence of the following regularity theorem.

Proposition 62. Let M be a smooth manifold with a C1,α Riemannian metric g.

Suppose there exist harmonic coordinates {ua} on an open subset U ⊂ M such that
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the Christoffel symbols Γcab are of class Ck,α for some k ≥ 1. Then the coordinates

{ua} are of class Ck+2,α, and g|U is of class Ck+1,α.

We will make use of the following regularity result of Kazdan and DeTurck,

which is a consequence of the fact that the map g 7→ Γ (taking a metric g to the

corresponding Christoffel symbols) is an overdetermined elliptic operator.

Lemma 63. (DeTurck and Kazdan (1981)) Let g be a C1 metric. If in some local

coordinates Γcab is of class Ck,α for some k ≥ 0, then in these coordinates the metric

g is of class Ck+1,α.

This differs from the proposition above in that it only asserts regularity of g in

the given coordinates. The ideas behind Proposition 62 is to use the harmonicity as-

sumption to deduce improved regularity of the {ua} coordinates, and hence conclude

that g is of class Ck+1,α with respect to any smooth coordinate chart.

Proof. (of Proposition 62) Since g is C1,α, the coefficients of ∆ will be of class Cα

in any coordinate chart. Standard regularity theory then implies that the harmonic

coordinates {ua} are C2,α.

We now proceed by induction, starting with the case k = 1. We first recall the

coordinate expression

(Hess f)ab =
∂2f

∂ua∂ub
− Γcab

∂f

∂uc

for any C2 function f . Now in any (smooth) coordinate chart {xi} we have

(Hess f)ij =
∂ua

∂xi
∂ub

∂xj
(Hess f)ab (4.2)

so we see that ∆ has C1,α coefficients. Then elliptic regularity implies that the

coordinate functions {ua} are in fact C3,α. We have from Lemma 63 that gab ∈ C2,α,

hence the equation

gij =
∂ua

∂xi
∂ub

∂xj
gab (4.3)
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implies that g is of class C2,α.

For the inductive step we let k > 1 and assume that the result holds for all

1 ≤ j ≤ k − 1. We are given that Γcab is Ck,α, so the result for k − 1 implies that

g is Ck,α, whence the coordinates {ua} are Ck+1,α. It follows from (4.2) that the

coefficients of ∆ are Ck,α, hence the {ua} are in fact Ck+2,α. Then Lemma 63 implies

that gab is Ck+1,α, and it follows from (4.3) that g is of class Ck+1,α.

In the proof of Theorem 58 we had gab = δab, hence Γcab = 0. Thus Proposition

62 immediately implies the smoothness of g with respect to the usual differentiable

structure of Rn.

4.3 Improved Sobolev convergence

We next turn to the second half of Theorem 58. We recall that gi → g in C1,α(B), and

g is smoothly isometric to the Euclidean metric g0. Additionally, we are assuming

the uniform bounds

0 ≤ Ric(gi) ≤ C. (4.4)

Our goal is to prove that gi → g in W 2,p(B) when p ≥ 1.

To accomplish this we will use harmonic coordinates on B. While it it known that

any Riemannian metric admits harmonic coordinates locally, we need to ensure that

this can be done uniformly in i; in other words we want each x ∈ B to be contained

in a neighborhood Ux such that there exist gi-harmonic coordinates on Ux for every

i. The results in Appendix A show that this is possible given uniform bounds on the

Ricci curvature and injectivity radius. The Ricci curvature bound is precisely (4.4),

and the uniform bound on injectivity radii follows from the C1,α convergence of the

gi to the Euclidean metric.

Lemma 64. Let Ω be a compact manifold with boundary Σ. Suppose {gi} and g are
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smooth Riemannian metrics, with gi → g in C1. Then

lim
i→∞

∫
B

R(gi) =

∫
B

R(g).

Proof. We first partition the domain as

Ω = U1 ∪ · · · ∪ UN ,

where each Uj is diffeomorphic to a smooth domain with corners in Rn, and the Uj

only intersect along their mutual boundaries. Then∫
Ω

f =
N∑
j=1

∫
Uj

f

for any integrable function f on Ω, so it suffices to prove the lemma on each Uj. We

thus let U = Uj for some j.

Since local coordinates exist on U we can write the scalar curvature as

R = δZ + s,

where Z and s are smooth functions of the metric and its first derivatives (see Bartnik

(1986) for details). Integrating by parts, we have∫
U

R(gi) =

∫
U

si +

∫
∂U

〈Zi, Ni〉 ,

where Ni denotes the inward unit normal to ∂U computed with respect to gi. Since

the right-hand side of the above equation depends continuously on g and its first

derivatives, we have

lim
i→∞

(∫
U

si +

∫
∂U

〈Zi, Ni〉
)

=

∫
U

s+

∫
∂U

〈Z,N〉

=

∫
U

R(g)

as desired.
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We therefore have
∫

Ω
R(gi) → 0 as i → ∞. We next use the assumption of

nonnegative Ricci curvature to get Lp convergence of the Ricci tensor.

Lemma 65. Assume the hypotheses of Theorem 58. Then

lim
i→∞
‖Ric(gi)‖Lp(Ω) = 0.

for all p ≥ 1.

Proof. The inequality Ric(gi) ≥ 0 implies |Ric(gi)| ≤ R(gi). Taking the pth power

and recalling that |Ric(gi)| ≤
√
nC, we obtain

0 ≤ |Ric(gi)|p ≤
(√

nC
)p−1

R(gi).

Now the fact that R(gi)→ 0 in L1 immediately implies

lim
i→∞

∫
Ω

|Ric(gi)|p = 0

as claimed.

Using these lemmata, together with appropriately chosen harmonic coordinates,

we complete the proof of W 2,p convergence.

Proposition 66. Assume the hypotheses of Theorem 58. Then gi → g in W 2,p for

all p ≥ 1.

Proof. For this proof will use i exclusively to index sequences, and use a and b as

coordinates indices. We first prove the result assuming p > 1; since B is bounded

the case p = 1 immediately follows.

Let x ∈ B. Then for some neighborhood U of x and every i, there exist functions

(u1
i , . . . , u

n
i ) such that:

• (u1
i , . . . , u

n
i ) are gi-harmonic coordinates in U ;
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• uai → ua in C2,α(U) for 1 ≤ 1 ≤ n, where (u1, . . . , un) are g-harmonic coordi-

nates on U .

Thus there exist harmonic coordinates with respect to each gi defined on some uni-

form neighborhood of x. With respect to these coordinates we have

−2 Ric(gi)ab = ∆gi(gi)ab +Qab(g
−1
i , ∂gi)

where Q is quadratic in g and ∂g. Since gi → g in C1,α, we find that

Qab(g
−1
i , ∂gi)→ Qab(g

−1, ∂g)

in C1,α and hence in Lp for any p > 0. Moreover, it follows from Lemma 65 that

Ric(gi)ab → 0 in Lp as long as p ≥ 1, so we can conclude that

∆gi(gi)ab → ∆ggab

in Lp; here we recall that g in fact smooth, so the right-hand side of the above limit

is defined. We now apply the standard Lp estimates for p > 1 (Theorem 9.11 of

Gilbarg and Trudinger (1983)) to find on any compact subset K b Ω

‖gab − (gi)ab‖W 2,p(K) ≤ C
(
‖∆gi(gab − (gi)ab)‖Lp(K) + ‖gab − (gi)ab‖Lp(K)

)
for some constant C independent of i. We first observe that gab − (gi)ab → 0 in Lp.

For the remaining term on the right-hand side we have

‖∆gi(gab − (gi)ab)‖Lp(K) ≤ ‖(∆gi −∆g)gab‖Lp(K) + ‖∆ggab −∆gi(gi)ab‖Lp(K).

It was shown above that ∆gi(gi)ab → ∆ggab in Lp; since gi → g in C1,α we also have

that ∆gigab → ∆ggab in Lp. Combining these results, we conclude that (gi)ab → gab

in W 2,p(K).

To complete the proof, we observe that there exist neighborhoods U1, . . . , UN ,

each of which admits gi-harmonic coordinates for every i, and compact subsets Ki b

Ui with K1 ∪ · · · ∪KN = B.
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5

Towards a global rigidity theorem

In this final chapter we finally discuss the subject of global scalar curvature rigidity,

thus considering metrics that are not necessarily close to the spherical metric in the

W 2,p topology. We first observe that no global rigidity property holds on the entire

hemisphere, by the counterexample of Brendle et al. (2010). It then seems natural to

study the problem of global rigidity on domains smaller than the entire hemisphere,

as this approach proved fruitful in the local case.

We are currently unable to prove a theorem of this sort, but make a conjec-

ture inspired by the results of Chapter 4. To state the conjecture, we first define

M(r, λ,D, ι) to be the space of metrics on Sn satisfying

supp(g − ḡ) ⊂ Br(x) for some x,

r2|Ric(g)| ≤ λ in Br(x),

diam(Br(x), g) ≤ rD,

inj(g) ≥ rι in Br(x),

for positive constants r, λ, D and ι. The convention here is that Br(x) is always

computed with respect to ḡ, hence diam(Br(x), g) is not necessarily equal to 2r as
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suggested by the notation.

The bounds on Ric(g) and inj(g) in this definition become weaker as r decreases,

so that a sequence gi ∈ M(ri, λ, ι), with ri → 0, could in fact have Ric(gi) → ∞

or inj(gi) → 0. However, when such a sequence is rescaled by ri (as will be done in

Section 5.2) the resulting metrics will have uniformly bounded Ricci curvature, and

injectivity radius bounded away from zero.

Conjecture 67. Let λ, ε,D, ι > 0. There exists a positive constant r = r(n, λ, ε,D, ι)

such that any g ∈M(r, λ,D, ι) with Ric(g) ≥ 0 and R(g) ≥ n(n−1) is diffeomorphic

to ḡ.

This conjecture is only approximate—for reasons discussed below it might be

necessary to assume a slightly stronger bound on the Ricci curvature, such as

r2−ε|Ric(g)| ≤ λ

for some positive constant ε.

5.1 Evidence for Conjecture 67

In the remainder of this Chapter we discuss a possible method of proof for the

conjecture, and explain the technical hurdles to be overcome in completing this

program.

We will proceed by contradiction, and thus assume that there exist positive con-

stants λ, D and ι, a sequence of radii ri → 0, and metrics gi ∈M(ri, λ,D, ι) satisfying

the hypotheses of the theorem, such that no gi is diffeomorphic to ḡ. Without loss of

generality we may assume supp(gi − ḡ) ⊂ Bri(N) for each i, where N ∈ Sn denotes

the north pole. We then carry out the following steps.

1. Rescale {gi} to obtain a sequence of metrics {g̃i} on the unit ball B ⊂ Rn with

uniformly bounded Ricci curvature and injectivity radius.
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2. Employ the convergence theory detailed in Appendix A to extract a convergent

subsequence g̃i → g̃ in C1,α(B) for some α ∈ (0, 1).

3. Prove that g̃ is flat near ∂B, then apply Theorem 58 to conclude that g̃ is flat,

and g̃i → g̃ in W 2,p(B) for any p ≥ 1.

4. Conclude that the original sequence {gi} converges to ḡ in W 2,p.

5. Use Theorem 22 to find that gi is diffeomorphic to ḡ for i sufficiently large,

thus achieving the desired contradiction.

As we will see below, the only unresolved issue is the W 2,p convergence in Step

4. We can prove that g̃i → g̃ in W 2,p(B) for any p ≥ 1 (as in Step 3), but from this

are only able to conclude that the original sequence {gi} converges to ḡ in W 2,p for

1 ≤ p ≤ n
2
. Theorem 22 is for metrics in a W 2,p-neighborhood of ḡ for any p > n,

and as such is not applicable here. To resolve this would require some quantitative

control on the rate at which ‖g̃i− g̃‖W 2,p(B) converges to zero. For instance, it would

suffice to show that

‖g̃i − g̃‖W 2,p(B) ≤ C(ri)
k

for k > 2− n
p
.

We devote the remainder of the chapter to filling in the details of the above steps.

5.2 Rescaling the sequence of metrics

Suppose g is a metric on Sn, with supp(g − ḡ) ⊂ Bε(N) for some ε < π. Letting

r denote the distance from the north pole N , we can write the standard spherical

metric as

ḡ = dr2 + sin2 rdσ2,
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where dσ2 denotes the standard metric on Sn−1. Writing p ∈ Sn in polar coordinates

as (r, θ), we define a diffeomorphism by

Ψε : Bε(N) −→ B ⊂ Rn

(r, θ) 7−→ (r/ε, θ).

Using standard polar coordinates in Rn we easily see that

(Ψ−1
ε )∗ḡ = ε2dr2 + sin2(εr)dσ2.

Now given any metric g on Bε(N) ⊂ Sn, we define its ε-rescaling to be

gε := ε−2(Ψ−1
ε )∗g

on B ⊂ Rn. It follows immediately that the spherical metric has ε-rescaling

ḡε = dr2 +

(
sin εr

ε

)2

dσ2,

which converges uniformly—along with all of its derivatives—to the flat metric g0 on

B as ε → 0. Expanding the sine term for small values of ε, we find that ḡε − g0 =

O(ε2), and similarly for all derivatives.

Returning to the proof of Theorem 67, and recalling that supp(gi − ḡ) ⊂ Br,

we define the rescaled sequence of metrics by g̃i = (gi)
2ri (assuming, without loss of

generality, that r < π
2
). The properties of this rescaling are given by the following

proposition.

Proposition 68. Define g̃i as above. Then the following are true for all i:

1. g̃i → g0 smoothly in the annulus A := B1(0) \B1/2(0);

2. |Ric(g̃i)| ≤ max{4λ,
√
n(n− 1)π2};

3. diam(B, g̃i) ≤ 1 + D
2

;

4. inj(g̃i) ≥ ι.
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Proof. Since gi was rescaled by a factor of 2r rather than r, we have (gi)
2r = ḡ2r on

A, and the first result follows.

To prove the Ricci curvature bound, we first observe from the diffeomorphism

invariance and scale invariance of the Ricci curvature tensor that

|Ric(g̃i)|2egi = (2r)4 |Ric(gi)|2gi

≤ 16λ2,

and so |Ric(g̃i)|2 ≤ 4λ in B1/2. In the annular region we can explicitly compute

|Ric(g̃i)|2 = (2r)4n(n− 1)2. We then use the fact that r < π
2

and the result follows.

For the diameter bound, we similarly have

diam(B, g̃i) =
1

2r
diam (B2r(N), gi) .

We then apply the triangle inequality to find that diam(B2r(N), gi) ≤ 2r + rD and

the result follows.

The proof of the injectivity radius bound is similar.

5.3 Finding a convergent subsequence

In the previous section we constructed a sequence {g̃i} of smooth metrics on the unit

ball that had uniformly bounded Ricci curvature, diameter and injectivity radius. We

next prove the existence of a convergent subsequence having the desired boundary

behavior.

Proposition 69. Let α ∈ (0, 1). Then there exists a metric g̃ on B such that

g̃i → g̃

subsequentially in C1,α(B). Moreover, g̃ agrees with g0 in some neighborhood of ∂B.

Proof. It follows immediately from Anderson’s convergence theorem that there exists

a metric g′ on B, and diffeomorphisms ϕi : B → B, such that

ϕ∗i g̃i → g′
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subsequentially in C1,α(B). It is a consequence of Anderson’s proof (cf. Theorem

2.2 in Petersen (1997)) that the sequence {ϕi} converges in C2,α(B) to some limiting

diffeomorphism ϕ on B. Let ψ = ϕ−1 and define g̃ = ψ∗g′, so that

(ϕi ◦ ψ)∗g̃i → g̃.

We then write

g̃i − g̃ = (id− ϕi ◦ ψ)∗ g̃i + [(ϕi ◦ ψ)∗g̃i − g̃] .

Since ϕi◦ψ converges to the identity in C2,α(B), we conclude that g̃i → g̃ in C1,α(B).

It remains to be shown that g̃ agrees with g0 near the boundary. This is trivial,

because g̃i was chosen to converge smoothly to g0 in the annular region A = B1\B1/2.

This completes the proof.

Since the rescaled metrics g̃i all had nonnegative Ricci curvature, we can now

appeal to Theorem 58 to conclude that g̃ is in fact isometric to g0; we thus write

g0 = τ ∗g̃ for some diffeomorphism τ that restricts to the identity on the annular

region A. Moreover, the curvature and injectivity radius bounds from Proposition

68 allow us to conclude that

τ ∗g̃i → g0 (5.1)

in W 2,p(B) for any p ≥ 1.

5.4 Back to the sphere

We now return to the original sequence {gi} of metrics on Sn. The idea is to use

the fact that the rescaled sequence converges to g0 in B (up to a diffeomorphism) to

control the W 2,p norm of gi − ḡ on Sn.

Proposition 70. There exists a positive constant K, and a diffeomorphism ηi of

B2ri ⊂ Sn for each i, such that

‖η∗i gi − ḡ‖W 2,p(Sn,ḡ) ≤ K(2ri)
n/p−2

{
‖τ ∗g̃i − g0‖W 2,p(B,g0) + r2

i

}
.
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for sufficiently large i.

For definiteness, we will define the W 2,p Sobolev norm on Sn as

‖h‖W 2,p(Sn,ḡ) =

[∫
Sn

(
|h|pḡ + |∇h|pḡ + |∇2

h|pḡ
)
dV̄

]1/p

.

We similarly define W 2,p(B, g0) and W 2,p(B, (ḡ)2r) for the unit ball in Rn. We then

have the following lemma relating the ḡ and g0 Sobolev norms on Sn and B, respec-

tively.

Lemma 71. There exists a constant K so that

‖h‖W 2,p(B,ḡ) ≤ K(2r)n/p−4
∥∥(ψ−1

2r

)∗
h
∥∥
W 2,p(B,g0)

for any symmetric (0, 2)-tensor h on B2r ⊂ Sn, provided r < π
2
.

Proof. For h on B2r we have by diffeomorphism invariance that

‖h‖W 2,p(B2r,ḡ)
=
∥∥(ψ−1

2r

)∗
h
∥∥
W 2,p(B,(ψ−1

2r )
∗
ḡ)

=
∥∥(ψ−1

2r

)∗
h
∥∥
W 2,p(B,(2r)2(ḡ)2r)

, (5.2)

where in the last line we have recalled the definition g2r := (2r)−2
(
ψ−1

2r

)∗
g. Under a

constant rescaling g 7→ λ2g we have

|h|pg 7→ λ−2p|h|pg

|∇h|pg 7→ λ−3p|∇h|pg

|∇2h|pg 7→ λ−4p|∇2h|pg

dVg 7→ λndVg.

Applying these with λ = 2r, we find that∥∥(ψ−1
2r

)∗
h
∥∥
W 2,p(B,(2r)2(ḡ)2r)

≤ (2r)n/p−4
∥∥(ψ−1

2r

)∗
h
∥∥
W 2,p(B,(ḡ)2r)

, (5.3)
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where we have used the fact that max{λ−2p, λ−3p, λ−4p} = λ−4p as long as λ ≤ 1.

Since the rescaled metrics (ḡ)2r converges smoothly to g0 as r → 0, there exists a

constant C such that∥∥(ψ−1
2r

)∗
h
∥∥
W 2,p(B,(ḡ)2r)

≤ C
∥∥(ψ−1

2r

)∗
h
∥∥
W 2,p(B,g0)

(5.4)

for all h and any r < π
2
. We combine (5.2), (5.3) and (5.4) and the result follows.

With this understanding of the scaling properties of the W 2,p norm, we can now

prove the main result of the section.

Proof. (of Proposition 70) We define ηi on B2ri by the composition

B2ri

ψ2ri−−→ B
τ−→ B

ψ−1
2ri−−→ B2ri ,

where τ is defined in (5.1). Since τ agrees with the identity in the annular region

B \ B1/2 ⊂ Rn, each ηi will have the same property on B2ri \ Bri ⊂ Sn, and hence

can be trivially extended to the entire sphere. Now the definition of ηi implies(
ψ−1

2ri

)∗
(η∗i gi − ḡ) =

(
ηi ◦ ψ−1

2ri

)∗
gi −

(
ψ−1

2ri

)∗
ḡ

=
(
ψ−1

2ri
◦ τ
)∗
gi − (2ri)

2(ḡ)2r

= (2ri)
2
[
τ ∗g̃i − (ḡ)2ri

]
,

so we can apply Lemma 71 to obtain

‖η∗i gi − ḡ‖W 2,p(B,ḡ) ≤ K(2ri)
n/p−2

∥∥τ ∗g̃i − (ḡ)2ri
∥∥
W 2,p(B,g0)

(5.5)

for some constant K that does not depend on i or p. From Section 5.2 we have∥∥(ḡ)2ri − g0

∥∥
W 2,p(B,g0)

= O(r2
i ) (5.6)

as i→∞, so the result follows from (5.5), (5.6) and the triangle inequality.
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5.5 Conclusion

We observe that the second term on the right-hand side of the inequality in Propo-

sition 70 is equal to K(2ri)
n/p, and hence converges to zero as i→∞, for any p > 0.

The first term is given by

(2ri)
n/p−2‖τ ∗g̃i − g0‖W 2,p(B,g0).

We have already shown that τ ∗g̃i − g0 → 0 in W 2,p(B, g0) for any p ≥ 1. Since

(2ri)
n/p−2 remains bounded precisely when 2p ≤ n, we immediately find the following.

Proposition 72. Consider {gi} on Sn as constructed above. Then

‖η∗i gi − ḡ‖W 2,p(Sn,ḡ) → 0

for any 1 ≤ p ≤ n
2
.

However, to get convergence for some p > n, we will need stronger control over

the rate at which

‖τ ∗g̃i − g0‖W 2,p(B,g0)

approaches zero.
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Appendix A

Convergence of Riemannian metrics with curvature
bounds

In this appendix we review the existence and basic properties of harmonic coordinates

on a Riemannian manifold. These coordinates, first used in DeTurck and Kazdan

(1981) are useful in studying the regularity of nonsmooth metrics. They also make

an appearance in the convergence theory of Riemannian manifolds with bounded

Ricci curvature (Anderson (1990)).

A.1 Harmonic coordinates

Let (Mn, g) be a Riemannian manifold, with g of class Ck,α for some k ≥ 1 and

α ∈ (0, 1). We say that a system of coordinates (u1, . . . , un) defined on an open set

U ⊂ M is harmonic if ∆ua = 0 for 1 ≤ a ≤ n. Elliptic regularity implies that each

coordinate function ua is of class Ck+1,α.

Harmonic coordinates are well-suited to the study of regularity problems, as

suggested by the following lemma.

Lemma 73. Let T be a tensor field on M . Suppose g and T are both Ck,α with respect
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to some coordinate chart. Then T is Ck,α with respect to g-harmonic coordinates.

This says that any tensor T is at least as regular in harmonic coordinates as it

is in an arbitrary coordinate chart. Applying this lemma to T = g, we find that the

metric has optimal regularity when computed in harmonic coordinates.

Recalling the coordinate expression for the Laplacian,

∆u = gab
(

∂2u

∂ua∂ub
− Γcab

∂u

∂uc

)

for any function u, we find in harmonic coordinates that gabΓcab = 0 for each c. Using

this, it is not hard to see that the Ricci curvature is given by

−2 Ricab = ∆(gab) +Qab(g
−1, ∂g), (A.1)

where Qab is some smooth, universal function that depends quadratically on the

inverse and first derivatives of the metric tensor. To avoid confusion, we emphasize

that ∆(gab) denotes the value of the Laplacian acting on the scalar function gab,

rather than the ab-component of the tensor ∆g, which is of course zero.

It follows from equation (A.1) that the regularity of g is entirely determined by

the regularity of the Ricci curvature tensor, rather than the full Riemann tensor.

Theorem 74. (DeTurck and Kazdan (1981)) Let g be a C2 Riemannian metric. If

Ric(g) is Ck,α (resp. real analytic) in harmonic coordinates for some k ≥ 0, then in

these coordinates g is Ck+2,α (resp. real analytic).

To show that this result is not vacuous, we observe that harmonic coordinates

always exist locally.

Lemma 75. Let g be a Riemannian metric of class Ck,α for some k ≥ 1. For

any x ∈M there exist Ck+1,α harmonic coordinates defined in some neighborhood U

containing x.
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As an illustration of this result, we observe that Einstein metrics are always real

analytic when viewed in harmonic coordinates. To demonstrate the substance of this

result, we consider the example g = ϕ∗g0, where g0 is the flat metric on Tn, and ϕ is

a diffeomorphism only of class C3. By construction this metric has Ric(g) = 0, but

is only of class C2 with respect to an arbitrary smooth coordinate chart on M . The

above result says that in a “good” (viz. harmonic) set of coordinates, g is in fact

real analytic.

In the following section we will consider sequences of Riemannian metrics. There

it will be necessary to find neighborhoods of uniform size on which harmonic coor-

dinates exist. Given a sequence {gi} and a point x ∈M , the above result proves the

existence of neighborhoods Ui = Bri(x) with the propery that there exist gi-harmonic

coordinates on Ui for each i. There is no guarantee, however, that the radii ri are

bounded away from zero as i → ∞. The following proposition shows that this will

be the case if certain geometric bounds are satisfied by the entire sequence.

Proposition 76. (Anderson (1990)) Let (Mn, g) be a Riemannian manifold with

|Ric(g)| ≤ λ. Then for any C > 1 and α ∈ (0, 1), there is a constant ε0 =

ε0(λ,C, n, α) with the following property: given any x ∈ M , there exist harmonic

coordinates (u1, . . . , un) on Bε(x)(x), where ε(x) ≥ ε0 inj(x), such that:

• gab(x) = δab;

• C−1 ≤ g(y) ≤ C for all y ∈ Bε(x)(x);

• ε(x)1+α‖gab(y)‖C1,α ≤ C for all y ∈ Bε(x)(x).

Thus given a sequence {gi} with |Ric(gi)| ≤ λ and inj(gi) ≥ ι for all i, there

exists a positive constant r = r(λ, ι, C, n, α) such that each gi admits harmonic

coordinates on any geodesic ball of radius r. Moreover, the components of g in any

such coordinate chart are uniformly bounded in C1,α.
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We finally show that the number of harmonic coordinate charts (satisfying the

above C1,α bounds) required to cover M is uniformly bounded above if one also has

control of the volume. For convenience we define

M(λ, ι, V ) = {(M, g) : |Ric(g)| ≤ λ, inj(g) ≥ ι, and Vol(M, g) ≤ V } .

With this notation in place we can state the final result of this section.

Corollary 77. For any C > 1 and α ∈ (0, 1), there exists N = N(n,C, α, λ, ι, V )

such that any (Mn, g) ∈M(λ, ι, V ) has a covering U1, . . . , UN with the property that

each Ui admits harmonic coordinates satisying the bounds stated in Proposition 76.

To prove this we require the following covering lemma (see Evans and Gariepy

(1992) for details).

Lemma 78. (Vitali covering lemma) Let F be a collection of closed balls in M with

sup{diam(B) : B ∈ F} <∞. Then there exists a countable family G ⊂ F of disjoint

balls such that ⋃
B∈F

B ⊂
⋃
B∈G

5B,

where 5B denotes the closed ball having the same center as B and five times the

diameter.

Proof. (of Corollary 77) We choose r = r(λ, ι, C, n, α) as given by Proposition 76,

and consider the family of balls

F = {Br/5(x) : x ∈M}

which obviously covers M . Then the Vitali covering lemma says there is a countable

set of points {xi} such that the balls Br/5(xi) are disjoint, and⋃
i

Br(xi) = M.
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From the Bishop–Gromov volume comparison theorem (see, for instance, Besse

(1987)) we have Vol(Br/5(xi)) ≥ α > 0 for each i, where α depends on r, n and

λ. The disjointness condition then implies∑
i

α ≤
∑
i

Vol(Br/5(xi)) ≤ V,

so we conclude that the covering {Br(xi)} is finite, and contains no more than V/α

elements. We thus set N = V/α and the proof follows.

A.2 Convergence theory

The main result in Anderson’s convergence theory for Riemannian manifolds with

bounded Ricci curvature is the following.

Theorem 79. (Anderson (1990)) The space of compact Riemannian n-manifolds

such that

|Ric | ≤ λ,

inj ≥ ι > 0,

Vol ≤ V,

is precompact in the C1,α topology.

Specifically, this means that for any sequence {(Mi, gi)} in M(λ, ι, V ), there

exists a compact Riemannian manifold (M, g), a subsequence {(Mi, gi)}, and diffeo-

morphisms ϕi : M →Mi such that ϕ∗i gi → g in C1,α(M). This in particular implies

that the manifolds Mi in the convergent subsequence are diffeomorphic, hence there

exists only a finite number of diffeomorphism types of n-manifolds inM(λ, ι, V ) for

each dimension n.

Since each Mi can be covered by a bounded number of harmonic coordinate neigh-

borhoods with C1,α bounds on the metric (by Corollary 77), there exist embeddings

Fi : Mi → RnN+n
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for all i, as in the proof of the Whitney embedding theorem (see Theorem 2.17 in

Spivak (2005) for details). One can then apply the Arzelà–Ascoli theorem locally to

show that the Fi(Mi) converge a manifold M ⊂ RnN+n in C2,β for some β < α.
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Appendix B

Weighted Hölder spaces and asymptotically flat
manifolds

.

In this appendix we review some basic features of analysis on asymptotically flat

manifolds, using the theory of weighted Hölder spaces. We follow the presentation

of Chaljub-Simon and Choquet-Bruhat (1979) and Lee and Parker (1987).

Throughout we let (M, g0) be a smooth Riemannian manifold. All covariant

derivatives, integrals, norms, etc. are to be computed with respect to the metric g0.

B.1 Weighted spaces

We first define a weighting function, σ, in terms of the geodesic distance from a fixed

point in M . For a fixed point x0 ∈ M , we set σ(x) = (1 + d(x0, x)2)1/2, where d is

the distance function on M induced by g0. Then for each integer k ≥ 0 and δ ∈ R,

we let Ck
δ (M) denote the space of functions u of class Ck such that the norm

‖u‖Ckδ (M) :=
k∑
i=0

sup
x∈M

σ(x)δ+i|∇iu(x)|
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is finite. For instance, u ∈ C0
δ (M) if and only if

|u(x)| ≤ C

d(x0, x)δ

for some positive constant C, so we can think of δ as specifying the rate of decay

of u at infinity. (Note that the opposite sign convention is chosen in both Bartnik

(1986) and Lee and Parker (1987), where δ describes the rate of growth at infinity).

Next we define the weighted Hölder space Ck,α
δ (M)—for k and δ as above, and

0 < α ≤ 1—to be the space of functions u ∈ Ck
δ (M) such that the norm

‖u‖Ck,αδ (M) := ‖u‖Ckδ (M) + sup
d(x,y)<inj(x)

[min(σ(x), σ(y))]δ+k+α |∇ku(x)−∇ku(y)|
d(x, y)α

is finite.

In this definition we are taking the supremum over all x, y such that y is contained

in a normal coordinate neighborhood centered at x, and ∇ku(y) refers to the tensor

at x obtained by parallel transport along the radial geodesic from x to y.

We next list some basic properties of the weighted Hölder spaces.

Lemma 80. Suppose k ≥ 0 and 0 < α ≤ 1. The following results hold.

1. The spaces Ck
δ (M) and Ck,α

δ (M) are Banach spaces.

2. If k ≤ l then multiplication

Ck,α
δ (M)× C l,α

ε (M)→ Ck,α
δ+ε(M)

is continuous.

3. If k ≤ l, α ≤ β and δ ≤ ε, then the inclusion

C l,β
ε (M) ⊂ Ck,α

δ (M)

is bounded.

4. If α < β and δ < ε, and (M, g0) is complete, then the inclusion

Ck,β
ε (M) ⊂ Ck,α

δ (M)

is compact.

86



B.2 Asymptotically Flat Manifolds

We can now use the weighted Hölder spaces to define the notion of an asymptotically

flat manifold. First, we say a Riemannian manifold (Mn, g0) is Euclidean at infinity

if there exists a compact set K ⊂M such that:

• M \K has a finite number of connected components M1, . . . ,MN ;

• there exist diffeomorphisms ϕi : Mi → Rn \B1(0) for 1 ≤ i ≤ N ;

• ϕ∗i gE = g0 on Mi for 1 ≤ i ≤ n.

In the last line, gE denotes the flat metric on Rn. The components M1, . . . ,MN are

called the ends of M .

This is really a topological property—given a smooth manifold satisfying the first

two properties in the above definition, one can always construct a smooth, complete

Riemannian metric g0 satisfying the third. We will often refer to an asymptotically

Euclidean manifold M without explicit reference to the background metric g0.

A Riemannian metric g on an asymptotically Euclidean manifold M is then called

asymptotically flat of order τ if g−g0 ∈ C1,α
τ (M). We are primarily interested in the

case τ > (n− 2)/2, as this is the regime in which the positive mass theorem holds.

Before stating this theorem, we must define the mass of an asymptotically flat

manifold. Let (Mn, g) be asymptotically flat, and for convenience assume that M

has only one end. Then there exist coordinates {xi} on M \K such that gij → δij as

r =
√∑

(xi)2 → ∞. Following the notation of Schoen (1989), we define the ADM

mass to be

mADM(g) := cn lim
R→∞

∫
SR

∑
i,j

(gij,i − gii,j) νjdµ,

where ν and dµ denote the outward unit normal and volume element, respectively,

of SR computed with respect to g, and cn is a positive constant that only depends
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on the dimension.

It was shown by Bartnik (1986) (cf. Lee and Parker (1987)) that mADM(g) is

independent of the choice of asymptotic coordinates through which it was defined—

and hence only depends on the metric g—provided τ > (n− 2)/2 and R(g) ∈ L1.

We conclude this section with the statement of the positive mass theorem.

Theorem 81. (Schoen and Yau (1979)) Let (Mn, g) be asymptotically flat of order

τ > (n − 2)/2. (If n > 7, assume additionally that M is a spin manifold.) If

R(g) ∈ L1 and R(g) ≥ 0, then mADM(g) ≥ 0. Moreover, mADM(g) = 0 if and only if

(Mn, g) is isometric to Rn with the flat metric.

B.3 Elliptic theory

We finally discuss the elliptic theory needed for the proof of Theorem 58. All results in

this section are taken from Lee and Parker (1987) and Chaljub-Simon and Choquet-

Bruhat (1979).

Proposition 82. Let (Mn, g) be asymptotically flat of order τ > 0.

1. If u ∈ C0
β(M) and ∆u ∈ C0,α

β+2(M), then u ∈ C2,α
β (M) and

‖u‖C2,α
β
≤ C

(
‖∆u‖C0,α

β+2
+ ‖u‖C0

β

)
.

2. If 0 < β < n − 2, h ∈ C0,α
δ (M) for some δ > 2, and the operator ∆ + h :

C2,α
β (M)→ C0,α

β+2(M) is injective, then it is an isomorphism.

From this proposition easily follows the existence of harmonic coordinates for

asymptotically flat manifolds.

Theorem 83. Let (Mn, g) be asymptotically flat of order τ > (n − 2)/2, and let

x1, . . . , xn be asymptotic coordinates on M \K. Then there exist functions u1, . . . , un
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on M satisfying ∆ua = 0 for 1 ≤ a ≤ n, and

ua − xa ∈ C2,α
τ−1(M) if n ≥ 4,

ua − xa ∈ C2,α
τ−1−ε(M) if n = 3.

We comment briefly on the case n = 3. The idea of the proof is to solve the

equation ∆ya = −∆xa for ya ∈ C2,α
τ−1(M) and then set ua = xa + ya. This is done by

applying Proposition 82 with weight

β = τ − 1 >
n− 2

2
− 1 =

n− 4

2
.

However, it only follows that β > 0 for n ≥ 4, so Proposition 82 does not necessarily

apply to the case n = 3. This can be overcome by instead solving the equation in a

weighted Sobolev space, and then applying a suitable weighted embedding theorem

to show that the solution is contained in C2,α
τ−1−ε(M) for any positive ε. Details can

be found in Lee and Parker (1987).

We finally use harmonic coordinates to give a convenient expression for the ADM

mass of an asymptotically flat manifold.

Lemma 84. Let (u1, . . . , un) be harmonic functions on M , with ua − xa ∈ C2,α
δ (M)

for some δ > (n− 2)/2. Then

mADM(g) = −cn

(
lim
R→∞

n∑
a=1

∫
SR

〈∇Ndu
a, dua〉

)
.

Proof. The decay condition ua− xa ∈ C2,α
δ implies that {ua} constitutes a harmonic

coordinate system outside a sufficiently large compact set, where we have∣∣gab − δab∣∣ ≤ C

rδ
,

|gab,c| ≤
C

r1+δ
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for some C > 0, with r =
√∑

(xa)2 as before. We thus compute

Γbaa − Γaab =
gbc

2
(2gac,a − gaa,c)−

gac

2
(gac,b + gbc,a − gab,c)

=
δbc

2
(2gac,a − gaa,c)−

δac

2
(gac,b + gbc,a − gab,c) +O(r−2δ−1)

= gab,a − gaa,b +O(r−2δ−1).

Since the ua are harmonic we have gacΓbac = 0 for each b, hence∑
a

Γbaa = gacΓbac +O(r−2δ−1)

= O(r−2δ−1).

We then recall that N = −ν, and write the ADM mass integrand as

cn
∑
a,b

(gab,a − gaa,b) νb = −cn
∑
a,b

(
Γbaa − Γaab

)
N b +O(r−2δ−1)

= cn
∑
a,b

N bΓaab +O(r−2δ−1).

From the definition of the Christoffel symbols we have

〈∇Ndu
a, dua〉 = −

∑
b

N b 〈Γabcduc, dua〉

= −
∑
b

N bgacΓabc

= −
∑
a,b

N bΓaab +O(r−2δ−1).

The result follows from the observation that
∫
SR
r−2δ−1 → 0 as R → ∞ precisely

when δ > (n− 2)/2.
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