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Abstract. Since the Simons cone was proposed by Simons in
1968, many efforts had been made to study the area minimizing
hypersurfaces with singularities. In this paper, the original proof of
the minimality of Simons cone by Bombieri, De Giorgi and Giusti is
revisited. We reduce the problem to a first order differential equa-
tion and establish a foliation of minimal hypersurfaces that admits
the area-minimizing cone as a level set. We show the existence of
solutions through computer simulations.
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1. Introduction

The regularity of area minimizing hypersurfaces in Rn with n ≤ 7
was established by Simons in 1968 [10]. Meanwhile, he proved that a
series of cones in R2p, namely

Cp,p =
{

(x, y) ∈ Rp × Rp : |x| = |y|
}

are locally stable. In 1969, Bombieri, De Giorgi and Gusti proved these
cones are actually a global minima of the area functional [2].

The minimality of Simons cone is very crucial to the development
of regularity theory of minimal surfaces. Not only provides it the
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first counterexample to the regularity of minimal hypersurfaces in di-
mensions larger than 7, but it also completes the proof for Bern-
stein problem, which states that there exists complete minimal graphs
f : Rn−1 → R which are not hyperplanes when n ≥ 9. Subsequently,
more precise limitations to the singular set of minimal surfaces were
given: an (n − 1)-dimensional minimal hypersurface in Rn is regular
outside a singular set whose dimension is at most n − 8. This result
affects many other related topics, for instance, the regularity of isoperi-
metric surfaces. The famous proof of Positive Mass Theorem by Schoen
and Yau is also limited to dimension less than or equal to 8 because of
the regularity problem of minimal hypersurfaces.

It was found later that the Simons cones are actually belong to a
larger collection of minimal cones. In Rn = Rp × Rq, consider

Cp,q =

{
(x, y) ∈ Rp × Rq :

|x|2

p− 1
=
|y|2

q − 1

}
We have the following theorem:

Theorem A. Cp,q is globally area-minimizing if any of the following
condition is met:

(i) if p+ q > 8 and p, q ≥ 2
(ii) if p+ q = 8 and p, q > 2

The collection of all Cp,q of minimal area is called Lawson’s cones.
After the first proof of the minimality of Simons cone, many simplifi-

cation and generalizations were made. These Simons cones were made
by different authors. In particular, we would like to mention the work
of Lawson [6], Simoes [9], Miranda [7], Davini [3], Morgan [8], Philippis
and Paolini [5].

Part (i) of Theorem A was proved by Lawson through the same
technique that was used in Bombieri, De Giorgi and Giusti’s paper. In
1973, Simoes proved part (ii) and thus complete the proof of Theorem
A. During 1980s and 1990s, Miranda provided several simplifications
with the aid of computer programs. An elegant and simple proof of
the minimality of Simons cone was given by De Philippis and Paolini
in 2009 using subcalibration method. The proof was generalized to
all but a few exceptional cases of Lawson’s cones by De Philippis and
Maggi [4] in 2014.

We reinterpreted the proof of Bombieri, De Giorgi and Giusti based
on the framework of calibrations. We will reduce the problem to lower
dimensions and will eventually study an ordinary differential equation.
Using computer program we can show the existence of solution and
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visualize the solution of the ODE, although the entire proof can be
carried out by hand.
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2. Preliminary results

For compact surfaces, the areas are finite and we can compare the
total area and determine which surface is minimal. But when it comes
to non-compact surfaces like Simons cone, what do we mean by area-
minimizing?

Let Ω ⊂ Rn be an open set and f : Ω→ Rn is a continuous nonneg-
ative function. Consider the following functional:

(1) A (Σ;B) =

∫
Σ∩B

f dA

where B is a Borel set in Ω, Σ is in the collection of all oriented smooth
hypersurfacesM and dA is the n−1 dimensional volume form. When
f = 1, this is the standard area functional, denoted as A(Σ;B).

We say that Σ is minimal (or A -minimal) in M if A (Σ;U) ≤
A (Σ′;U) for any Σ′ ∈ M that is in the homology class of Σ and any
precompact open set U ⊂ Ω.

So for non-compact hypersurfaces, area-minimizing means that it
minimizes area when taking intersection with any precompact open
set.

It is clear that if Σ is minimal among all hypersurfaces in M , it is
a critical point of the functional A , meaning that the first variation
of functional A at Σ is null. Suppose we have a one-parameter family
of hypersurfaces {Σt}t∈R ⊂ M , with Σ0 = Σ. The minimality of Σ
implies that, for any precompact set U ,

(2)
d

dt
A (Σt;U)

∣∣∣∣
t=0

= 0

We say that a hypersurface Σ is A -critical (or simply, critical) if it
satisfies equation 2 for any one-parameter family Σt.
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Notice that the collection of smooth hypersurfacesM does not con-
tain any of the Lawson’s cones. Hence, we need to expend the class
of our admissible “surfaces”. To that end, we need some tools from
geometric measure theory. Given a measurable set E ⊂ Rn, we define
perimeter of E in Ω ⊂ Rn as1:

P (E,Ω) = sup

{∫
E

div g dx : g ∈ C1
c (Ω, R), |g|L∞ ≤ 1

}
We say that a set E has locally finite perimeter, if P (E,Ω) is finite

for all bounded open set Ω.
For any measurable set E with locally finite perimeter, we include

its boundary ∂E to our collection of “hypersurfaces”. To have the
functional A (Σ; Ω) well defined on this enlarged set of hypersurfaces,
we will also need to change the volume form to n − 1 dimensional
Hausdorff measure dHn−1 and take Lebesgue integral. We won’t go
into details on this theory, but everything we defined before is also well-
defined in this setting. In fact, the boundary of a measurable set with
locally finite perimeter agrees with an oriented smooth hypersurface
except on a Hn−1 negligible set. The theory of sets with locally finite
perimeter can be found in [5].

Moreover, we say that a hypersurface Σ (the boundary of some set
E) is minimal if A (Σ;U) ≤ A (Σ′;U) for any hypersurface Σ′ which
is the boundary of some set E ′ that only disagrees with E in some
precompact open set U ⊂ Ω. Observe that Σ agrees with Σ′ outside U
and their union is the boundary of the symmetric difference E∆E ′. So
in some sense, we can say they are “homologous”to each other.

Equation 2 still holds if Σ is minimal. However, equation 2 is not
enough to show the minimality of a critical hypersurface Σ. So the
question comes naturally: given a critical hypersurface Σ of functional
A , how can we show that it is minimal? One way to show a submanifold
minimizes volume in its homology class is through calibration.

3. Calibration methods

A degree p calibration of an oriented Riemannian manifold (M, g) is
a differential p-form ω such that:

(i) ω is closed, that is, dω = 0.

1C1
c (Ω,R) is the set of continuously differentiable functions with compact support

in Ω
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(ii) for any o ∈ M and any p-dimensional subspace V ⊂ ToM , the
inequality ω|V ≤ dV |V always holds, where dV is the volume
form respect to g.

We say Σ ⊂M is a calibrated submanifold if the calibration ω equals
the induced volume form when restrict to any tangent space of Σ. It is
well known through a one line argument that a calibrated submanifold
Σ minimizes volume in its homology class:

V (Σ) =

∫
Σ

ω =

∫
Σ̃

ω ≤
∫

Σ̃

dV = V (Σ̃)

where Σ̃ homologous to Σ. The second equality comes from Stroke’s
theorem since ω is closed and the inequality is obtained through the
definition of calibration.

Now in our case, we have Ω ∈ Rn equipped with the standard metric.
To calibrate a smooth hypersurface Σ, we need to find a n−1 differential
form on Ω. However, by identifying the space of vector fields and n−1
differential forms on Ω, it is sufficient to exhibit a vector field ξ such
that:

(i) ξ = ν on Σ;

(ii) div(ξ) = 0 on Ω;

(iii) |ξ| ≤ 1 on Ω,

where ν is unit normal vector field on Σ. If Σ is minimal of the area
functional, we have a similar one line argument as before,

A(Σ;U) =

∫
Σ∩U

ξ · ν dHn−1 =

∫
Σ′∩U

ξ · ν ′ dHn−1 ≤ A(Σ′;U)

where Σ′ is a hypersurface in the homology class of Σ, ν ′ is the unit
normal of Σ′ and U is any precompact open set in Ω.

Note that to calibrate Σ with respect to functional A instead of
the standard area functional, we simply replace condition (ii) with
div(f · ξ) = 0.

For the boundary of sets with locally finite perimeter, the barrier is
to provide a divergence theorem that can compare two ”homologous”
surfaces. We will employ the following refined version of the divergence
theorem:

Lemma 1. Let ξ be a bounded vector field on Ω. Suppose there exist
closed sets S and S0, where Hn−1(S0) = 0 and S\S0 is a smooth surface
and that

(i) ξ is C1 and div ξ = 0 on Ω \ S
(ii) ξ is continuous on Ω \ S0
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Then div ξ = 0 holds distributionally on Ω. Morevover, if E and F are
two sets of locally finite perimeters that only disagrees on a precompact
open set U ⊂ Ω, then∫

∂E∩U
ξ · ν∂E dHn−1 =

∫
∂F∩U

ξ · ν∂F dHn−1

This divergence theorem allows us to calibrate surfaces that are not
necessarily regular. We refer the proof to lemma 2.4 and 2.6 of [1].

Although calibration is a powerful tool, it is not an easy task to find a
calibration for a given hypersurface, as there is no standard technique.
Fortunately, there are ways to work around.

Sub-calibration method uses the same idea but weakens the condition
(ii) on divergence. Suppose Σ = ∂R of some region R, sub-calibration
only requires div(ξ) ≤ 0 on R ∩ Ω. Intuitively, such vector field cali-
brates the hypersurface from one “side”, and we can use another vector
field to calibrate the surface from the other “side”. An elegant and de-
tailed discussion of subcalibration can be found in De Philippis’ paper.
They use a explicit function f(x, y) = (|x|4 − |y|4)/4 to sub-calibrate
the Simons cone.

Another way to find a calibration is through foliation. We say that
a collection of hypersurfaces {Σt} is a foliation of an open set Ω ∈ Rn

if they are pairwise disjoint and Ω =
⋃
t(Σt ∩Ω). The idea is to form a

foliation using level sets of certain real valued function f . Once we have
a foliation in which each hypersurface is critical to the area functional,
we would want to use the unit normal vectors as the vector field for
calibration. One thing we need to make sure is that the divergence has
to vanish. This is accomplished by the following proposition.

Proposition 2. Let V be an open set of Ω and f ∈ C2(V, R) such that
|∇f | 6= 0 on V . Let {Σt} be a family of hypersurfaces in Rn such that
Σt ∩ V = f−1(t). If Σt are critical for the area functional in Ω, then

div

(
∇f
|∇f |

)
= 0 on V

A proof is given in [3], but we will provide a simpler proof here.

Proof. Fix x0 ∈ V . Without the loss of generality, we can assume Σ0

is the unique hypersurface that passes through x0.
Since |∇f(x0)| 6= 0, the inverse function theorem implies that Σ0 is

smooth in an open neighborhood near x0. So there exists ε > 0 such
that Σ0 ∩Bε(x0) is smooth.
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We know that Σ0 is at critical point of the area functional.Hence,
equation 2 is true for U = Bε(x0). We then have

d

dt
A(Σt;Bε(x0))

∣∣∣∣
t=0

= 0

By the first variation of the area formula 2, we obtain that

A′(Σ0;Bε(x0)) =

∫
Σ0∩Bε(x0)

div ν0 dA = 0

where ν0 is the unit normal on Σ0. As |∇f | 6= 0 at x0, the unit normal
on Σ is just the unit vector of the gradient. Since f is twice continuously
differentiable div ν0 is continuous. The integral remains 0 for any ε less
than some ε0. This implies that div ν0 = 0 at x0. Therefore,

div

(
∇f(x0)

|∇f(x0)|

)
= 0

This is true for all x0 ∈ V , so we have completed the proof. �

4. SO(p)× SO(q) invariant foliation

The cone Cp,q is G = SO(p)×SO(q) invariant, meaning that G acts
on the cone is the cone itself. Thus, we want to have a foliation such
that each hypersurface is also invariant under the action of G. We
can use the level sets of some G-invariant function f : Rn → R. That
means f(G(z)) = f(z) for any z ∈ Rn. Let z = (x, y) with x ∈ Rp and
y ∈ Rq. Then f(x, y) = f(x′, y) if |x| = |x′| and same for variable y.
Thus, the value of f(x, y) only depends on |x| and |y|.

Now let,

S0 =
{

(x, y) ∈ Rp × Rq ∼= Rn : |x| · |y| = 0
}

It is then clear that a G-invariant function f : Rn → R is uniquely
determined by its value on S0 and a function F : R+ × R+ → R.

The following proposition combines the result of lemma 1 and propo-
sition 2 and shows how we are going to calibrate Cp,q.

Proposition 3. Let S0 be the set defined as above and let S = Cp,q ∪
S0. Assume f ∈ C2(Rn \ S0, Rn) is a G-invariant function that has
nonzero gradient on Rn \ S. If f−1(0) = Cp,q \ 0 and ∇f/ |∇f | admits
a continuous extension on f−1(0) that agrees with the unit normal of
the cone, then there exists a vector field ξ that calibrates the level sets
of f , and in particular the cone Cp,q.

2A proof can be found in [11]
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Proof. Let ξ = ∇f/|∇f | on Rn \ S0 and ξ = 0 on S0. This vector field
is well defined since the gradient of f is nowhere zero. We observe two
facts here.

First, ξ is C1 and div ξ = 0 on Rn\S. The first part is straightforward
since f is twice continuously differentiable. To get the second part, we
simply apply proposition 3 with f restricted on Rn \ S. Second, ξ is
continuous on Rn \S0 because ∇f/ |∇f | admits a continuous extension
to S \ S0.

When p, q ≥ 2, Hn−1(S0) = 0. Thus, we can apply lemma 2 here.
With the arguments of calibration, the proof is then complete. �

So the proof of Theorem A comes down to find a G-invariant function
f that satisfies the conditions in proposition 3. Since f is determined
by a function F : R+ × R+ → R, we can then reduce our problem to
lower dimensions.

5. First order ODE

Now we see that the essential part of proving Theorem A is to finding
an appropriate G-invariant function f . More specifically, we need

div

(
∇f
|∇f |

)
= 0 on Rn \ S0

Since f : Rn → R is G-invariant, we can define F : R+ × R+ → R
by F (u, v) = f(x, y) where x = (x1, ..., xp) ∈ Rp, u = |x| and y =
(y1, ..., yq) ∈ Rq, v = |y|. For convenience, we will use subscripts for
partial derivatives.

We know that,

∇f =

p∑
i=1

∂f

∂xi
~xi +

q∑
j=1

∂f

∂yj
~yj

=

p∑
i=1

Fu
∂u

∂xi
~xi +

q∑
j=1

Fv
∂v

∂yj
~yj

=

p∑
i=1

Fu · xi
u

~xi +

q∑
j=1

Fv · yj
v

~yj

|∇f |2 = F 2
u + F 2

v
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Compute the divergence

∂

∂xi

(
∂f
∂xi

|∇f |

)
=

∂

∂xi

(
Fu · xi

u
√
Fu

2 + Fv
2

)

=
Fu

u
√
Fu

2 + Fv
2

+
x2
i

u
· −F

3
u − FuFv2 + uFuuFv

2 − uFuvFuFv
u2(Fu

2 + Fv
2)3/2

p∑
i=1

∂

∂xi

(
∂f
∂xi

|∇f |

)
=

pFu

u
√
Fu

2 + Fv
2

+
−Fu3 − FuF 2

v + uFuuFv
2 − uFuvFuFv

u(Fu
2 + Fv

2)3/2

=
(p− 1)(Fu

3 + FuFv
2)

u(Fu
2 + Fv

2)3/2
+
FuuFv

2 − FuvFuFv
(Fu

2 + Fv
2)3/2

q∑
j=1

∂

∂yi

(
∂f
∂yi

|∇f |

)
=

(q − 1)(Fv
3 + FvFu

2)

v(Fu
2 + Fv

2)3/2
+
FvvFu

2 − FuvFuFv
(Fu

2 + Fv
2)3/2

div

(
∇f
|∇f |

)
=

p∑
i=1

∂

∂xi

(
∂f
∂xi

|∇f |

)
+

q∑
j=1

∂

∂yi

(
∂f
∂yi

|∇f |

)

Setting the divergence to 0, we then obtain

(p−1)
Fu

3 + FuFv
2

u
+(q−1)

Fv
3 + FvFu

2

v
+FuuFv

2+FvvFu
2−2FuvFuFv = 0

We know that the divergence is 0 on each level set of f . So let’s
consider the level curves F (u, v) = C for some constant C. We param-
etrize the curve as (u(t), v(t)). Since F is constant on the curve, we
know that

dF = Fuu
′ + Fvv

′ = 0

and similar for second derivative:

d2F = Fuu(u
′)2 + Fvv(v

′)2 + Fuu
′′ + Fvv

′′ + 2Fuvu
′v′ = 0

Combine these two with the equation above, we have that

(3) u′′v′ − u′v′′ + (q − 1)
(u′)3 + (v′)2u′

v
− (p− 1)

(v′)3 + (u′)2v′

u
= 0

It is useful to define the angular parameter:

θ = arctan
v

u
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which is left invariant by homotheties u → λu and v → λv for any
λ > 0. Let’s further parametrize the curve by θ,{

u = ew(θ) cos θ

v = ew(θ) sin θ

We have, {
u′ = ẇu− v
v′ = ẇv + u{
u′′ = (ẅ + ẇ2 − 1)u− 2ẇv

v′′ = (ẅ + ẇ2 − 1)v + 2ẇu

Put these back to equation 3, we obtain an ordinary differential
equation:

ẅ = (1 + ẇ2)

(
(n− 1) +

d− (n− 2) cos(2t)

sin(2t)
ẇ

)
where d = p− q. To simplify further, we set z = ẇ and thus,

(4) ż = (1 + z2)

(
(n− 1) +

d− (n− 2) cos(2t)

sin(2t)
z

)
We want to reduce the problem to study this first order ODE. The

following lemma tells us when the existence of solution to equation 4
implies that there’s a critical foliation that admits cone Cp,q as a level
set.

First, we fix some notations. Let γ be the ray on R+×R+ such that
when acted by group G it results in cone Cp,q. Furthermore, we denote
θ0 = 1

2
arccos d

n−2
between ray γ and u-axis.

Lemma 4. Let z(θ) be a solution of equation 4 defined on θ ∈ [0, π/2]\
{θ0} such that limθ→θ0 |z(θ)| = +∞. If the solution curve has no inter-
section with γ, then there exists a function f that satisfies the conditions
in proposition 3.

Proof. Consider the curve

ρ(θ) =
(
ew(θ) cos θ, ew(θ) sin θ

)
defined by the solution ẇ(θ) = z(θ). This curve is well-defined on
[0, π/2]\{θ0}. By classical results on the Cauchy problem, the solution
z(θ) is C1, so the curve is at least C2.

Now we want to show that the curve ρ(t) tends asymptotically to
the ray γ. Consider the distance to the origin r(θ) = |ρ(θ)| = ew(θ).
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Since z(θ) goes to infinity θ approaches θ0, we have

ṙ(θ0) = lim
θ→θ0

z(θ)ew(θ) = +∞

This implies that ρ(θ) approaches γ when the angle is close to θ0.
Now that we have ρ(θ) that tends to γ asymptotically and it has

no intersection with γ, it is not so hard to build a function f . Let ρ−
and ρ+ be the curves that corresponds to ρ(t) for θ < θ0 and θ > θ0

respectively. Then the homothetics of these two curves and γ will gives
us a foliation on R+×R+, with each curve corresponds to F (u, v) = C
for some C and γ corresponds to C = 0. Specifically, we have a function
F̃ (r, θ) = F (u, v) under polar coordinates:

F̃ (r, θ) =


r/r(θ) when 0 ≤ θ < θ0

0 when θ = θ0

−r/r(θ) when θ0 < θ ≤ π/2

Under the action of G, we then obtain the function f . The properties
in proposition 3 are satisfies because ρ(θ) is C2 and satisfies equation
4. �

So to prove Theorem A, all we need to show is that when p, q satisfy
conditions in Theorem A, the differential equation 4 has a solution
defined on [0, π/2] \ θ0 with desired properties. We have the following
lemma.

Lemma 5. For p, q satisfying either part (i) or part (ii) in Theorem
A, there exists a solution z(t) defined on [0, θ0) ∪ (θ0, π/2] such that
limθ→θ0 |z(θ)| = +∞ and the solution curve does not intersect with γ.

Bombieri, De Giorgi and Giusti have proved the existence of solutions
to a differential equation that is equivalent to equation 4 in the case
of Simons cone. Simoes extends the their resuls to all Lawson’s cones.
Various proofs of lemma 5 (with equivalent differential equations) can
be found in [2], [9], [7].

6. Computer simulation results

Here we will use computer program Mathematica to demonstrate the
existence of solution to equation 4.

When p, q ≥ 2 and n > 8, the solution will yield a curve that tends
asymptotically to the ray γ. Figure 1 show the case when p = q = 5.

When the solution exists and |z(θ)| goes to infinity when the angle
approaches the angle of the ray γ, the curve will never intersect with
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6

8

10

Figure 1. Solution to equation 4 when p = 5 and q = 5

γ. Figure 2 shows that when such curve exists, the homothetics of the
curve result in a foliation the calibrates the cone.

Figure 2. Homothetics of the curve forms a foliation
that calibrates the cone
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However, when p, q does not satisfy the conditions in Theorem A,
the solution exists, but the curve will intersect with γ and therefore
there exists no foliation that calibrates the cone.

Figure 3 shows that when p = 2 and q = 6. Though it is not obvious
through the picture, there is an intersection between the solution curve
and the ray γ.

0 2 4 6 8 10
0

2

4

6

8

10

Figure 3. Solution when p = 2 and q = 6

Therefore through computer simulation, we can see that the desired
solution only exists when p and q satisfy the conditions in theorem A.
Combining the results from previous sections, this demonstrates the
minimality of Lawon’s cones.
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