Exam \#3 Math 108 - Fall 2007
Honor pledge: I have adhered to the Duke Community standard in completing this test.

Name:
Score:

1. Consider the numbers $a_{n}=2 \int_{0}^{1} \sqrt{x} \cos (n \pi x) d x$, for $n=0,1,2,3, \ldots$
(a) (10 pts.) Sketch the graph of the function

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)
$$

over the interval $[-2,2]$.
(b) (5 pts.) What is the value of $f(4)$?
2. (10 pts.) Find all the eigenvalues λ_{n} and the corresponding eigenfunctions X_{n} for the problem

$$
\begin{aligned}
& X^{\prime \prime}+\lambda X=0 \\
& X(0)=0, X^{\prime}(\pi)=0 .
\end{aligned}
$$

3. (20 pts.) Solve the partial differential equation

$$
\begin{aligned}
& u_{x x}=u_{t} \\
& u(0, t)=0, u_{x}(\pi, t)=0 \\
& u(x, 0)=\sin \frac{3 x}{2}+2 \sin \frac{7 x}{2}
\end{aligned}
$$

where $0<x<\pi$ and $t>0$.

Do Not include integrals in your final answer.
HINT: You may want to use the result of Problem 2 for some parts.
(Extra space for problem 3: $u_{x x}=u_{t}, u(0, t)=0, u_{x}(\pi, t)=0, u(x, 0)=$ $\sin (3 x / 2)+2 \sin (7 x / 2)$.)
4. (10 pts.) Find the steady state solution of the following problem:

$$
\begin{aligned}
& u_{t}=u_{x x}-u \\
& u(0, t)=0 \\
& u_{x}(L, t)=2 .
\end{aligned}
$$

Here $0<x<L, t>0$ and T is a positive constant.
5. (15 pts.) Find the solution of the Dirichlet problem

$$
u_{x x}+u_{y y}=0
$$

with the boundary conditions

$$
\begin{aligned}
& u(x, 0)=0, u(x, 1)=0,0<x<1 \\
& u(0, y)=0, u(1, y)=2,0 \leq y \leq 1
\end{aligned}
$$

(You may use a formula from class.)
Do not include integrals in your final answer.
(Extra space for problem 5: $u_{x x}+u_{y y}=0, u(x, 0)=0, u(x, 1)=$ $0, u(0, y)=0, u(1, y)=2$.)
6. The dispersive wave equation is given by

$$
\frac{1}{a^{2}} u_{t t}+\gamma^{2} u=u_{x x}, 0<x<L, t>0
$$

with the boundary conditions

$$
u(0, t)=0, u(L, t)=0, t>0
$$

and the initial conditions

$$
u(x, 0)=f(x), u_{t}(x, 0)=0, t>0
$$

(a) (10 pts.) Step 1. Using separation of variables find the eigenvalue problems for this equation.
(Problem 6 continues...)
(b) (10 pts.) Step 2. Solve the eigenvalue problems you found in (a).
(Problem 6 continues...)
(c) (10 pts.) Step 3. Deduce using Fourier series that the solution of the dispersive wave equation has the form

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \cos \left(a t \sqrt{\frac{n^{2} \pi^{2}}{L^{2}}+\gamma^{2}}\right) \sin \frac{n \pi x}{L}
$$

where

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

