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Introduction  

Latent semantic analysis (LSA) is a method for exploring the underlying meaning of 

words. LSA suppose that words that are close in meaning will occur in similar part of text, 

which is that ”a word is characterized by the company it keeps"[1 ] Linear algebra 

methods, in particular, singular value decomposition (SVD), is used to solve particular 

problems. 


Moreover , LSA has been shown to reflect human knowledge. In addition, LSA has found 

application in a number of areas, including selecting educational materials for individual 

students and improving reading comprehension of students.

LSA 

Latent Semantic Analysis (LSA) is a method for discovering underlying meaning in 

document. [2] In a given file , each document and term is expressed as a vector. Each 

element in a vector shows the frequency of the document or term context . In this way,  



document-document, document-term, and term-term similarities or semantic relationship 

can be unveiled by machine.


Here is an simple Example of how LSA works in a particular situation [2]


“ Suppose we have the following set of five documents d1 : Romeo and Juliet. 

d2 : Juliet: O happy dagger! 

d3 : Romeo died by dagger. 

d4 : “Live free or die”, that’s the New-Hampshire’s motto. 

d5 : Did you know, New-Hampshire is in New-England. 

and a search query: dies, dagger. 

Clearly, d3 should be ranked top of the list since it contains both dies, dagger. Then, d2 

and d4 

should follow, each containing a word of the query. However, what about d1 and d5? 

Should they be returned as possibly interesting results to this query? As humans we know 

that d1 is quite related to the query. On the other hand, d5 is not so much related to the 

query. Thus, we would like d1 but not d5, or differently said, we want d1 to be ranked 

higher than d5. 

The question is: Can the machine deduce this? The answer is yes, LSI does exactly that. 

In this example, LSI will be able to see that term dagger is related to d1 because it occurs 

together with the d1’s terms Romeo and Juliet, in d2 and d3, respectively. Also, term dies 

is related to d1 and d5 because it occurs together with the d1’s term Romeo and d5’s 

term New-Hampshire in d3 and d4, respectively. LSI will also weigh properly the 

discovered connections; d1 more is related to the query than d5 since d1 is “doubly” 



connected to dagger through Romeo and Juliet, and also connected to die through 

Romeo, whereas d5 has only a single connection to the query through New-Hampshire. ”


Mathematical Foundations of LSA  

How latent semantic analysis (LSA) works on computer is based on the vector space 

models. By using vector space model, LSA can retrieval text from a super huge 

information database effectively and automatically.


When the vector space model for latent semantic analysis is created, singular value 

decomposition (SVD) is used to decomposed the vector space. It is by using the SVD that 

LSA obtains the meanings of types and documents.


Create the Vector Space Model  

A vector space model for latent semantic analysis (LSA)  is  a type-by-document matrix. 

[3]The rows of the input matrix are made up of  types, which are the individual 

components that make up a document. The columns of the input matrix are made up of 

documents. Therefore, a document that has  n documents and m types can be 



transformed into an m by n type-by-document matrix A.Each column of the matrix A 

contains zero and nonzero elements, aij, who has a frequency of ith type in the jth 

document. 





 





TABLE 1

TABLE 2



Here is an example above [3].


 “ A small example of a document collection and its corresponding input type-by-

document matrix with type frequencies can found in above [BB}. In this example, 

documents are the actual title, consisting only of italicized keywords. Documents labeled 

M1–M5 are music-related titles, documents labeled B1–B4 are baking-related titles, and 

no document has more than one occurrence of a type or keyword. ”


Also, a weighting is applied to the each nonzero element, in am attempt to improve text 

retrieval [4]. When retrieving paper , the types that best distinguish documents from the 

rest  are the most important. Therefore, the computer should give a low weight to a high-

frequency type that occurs in many documents and a high weight to types that occur in 

some documents but not all [5]. 


Also,  LSA utilities a local and global weighting to each nonzero element, in order to 

further distinguish the importance of types within documents (local) and inter-document 

collection (global). The local and global weighting functions for each element are usually 

directly related to how frequently a type occurs within a document and inversely related to 

how frequently a type occurs in documents across the collection, respectively.


[6] 



 “ Local weighting functions include using type frequency, binary frequency (0 if the type is 

not in the document and 1 if the type is in the document), and log of type frequency plus 

1. Global weighting functions include normal, gfidf, idf, and entropy, all of which basically 

assign a low weight to types occurring often or in many documents. A common local and 

global weighting function is log-entropy. Dumais found that log-entropy gave the best 

retrieval results, 40% over raw type frequency (Dumais, 1991). The local weighting 

function of log (type frequency + 1) decreases the effect of large differences in 

frequencies.  

Entropy, defined as 1 +

where  

tfij = type frequency of type i in document j,  

and gfi = the total number of times that type i appears in the entire collection of n 

documents , gives less weight to types occurring frequently in a document collection, as 

well as taking into account the distribution of types 

over documents (Dumais, 1991). Below table has the local and global weighting function 

log-entropy applied to each nonzero type frequency in the type-by-document matrix given 

previously in previous one. “




Decomposition of Input Matrix Into Orthogonal 

Components  

Once the input matrix A is created, it is transformed into a type and document vector space by 

orthogonal decompositions in order to exploit truncation of the vectors. Properties of the matrix 

are preserved by transforming a matrix by using orthogonal decompositions . 


“ An orthogonal matrix is one with the property of QTQ = I, where Q is an orthogonal matrix, QT is 

the transpose of matrix Q (the rows and columns of Q are the columns and rows of QT), and I is 

the identity matrix: “ [6] 

TABLE 3



LSA decompose the type-by-document input matrix A by using the singular value 

decomposition (SVD). There are several significant advantages of using SVD in LSA. 


“First, the SVD decomposes A into orthogonal factors that represent both types and 

documents. Vector representations for both types and documents are achieved 

simultaneously. Second, the SVD sufficiently captures the underlying semantic structure of 

a collection and allows for adjusting the representation of types and documents in the 

vector space by choosing the number of dimensions. Finally, the computation of the SVD 

is manageable for large datasets.” [6]


How the SVD for a m × n type-by-document input matrix A with the rank (“ number of 

vectors in the basis of the column space or the vector subspace spanned by the column 

vectors ” [6] ) of A = r is decomposed is defined as follows: 



In which U is an orthogonal matrix, V is an orthogonal matrix, and � is a diagonal matrix ( �

= diagonal(s1, s2, ..., sn) with the remaining matrix cells all zeros [7] 

A pictorial representation of the SVD of input matrix A and the best rank-k approximation 

to A can be seen in below [8].


A can be written as the sum of rank 1 matrices [9]: 


r can be reduced to k to create 


The matrix Ak is the closest rank k approximation to the original matrix A [9] [10]. 



“ The matrix Ak (Ak = UkSkV k
T ) is created by ignoring or setting equal to zero all but the 

first k elements or columns of the type vectors in U, the first k singular values in S, and the 

first k elements or columns of the document vectors in V. The first k columns of U and V 

are orthogonal, but the rows of U and V, the type and document vectors, consisting of k 

elements are not orthogonal. By reducing the dimension from r to k, extraneous 

information and variability in type usage, referred to as “noise,” which is associated with 

the database or document collection is removed. ” [6] 

Ak captures important underlying semantic structure of types and documents. Types 

similar in meaning are adjacent in k-dimensional vector space even though they never 

occur in a same part of a document, and documents similar in conceptual meaning are 

near each other even if they have similar types [11]. This k-dimensional vector space is 

the foundation for the semantic structures LSA operation. 


In the previously mentioned example ,[6]

“ Using the small document collection from Table 1 and its corresponding type-by-

document matrix in Tables 2 and 3, the SVD can be computed and truncated to a two-

dimensional vector space by reducing the rank to k = 2. Table 4 shows the SVD of the 

example type-by-document matrix given in Table 3. The values in the boldface cells in the 

type matrix U, the document matrix V, and the diagonal matrix of singular values � are used 

to encode the representations of types and documents in the two-dimensional vector 

space.”  



TABLE 4



“ Table 5 shows a rank-2, k = 2, plot of the types, represented by squares, and 

documents, represented by triangles, in the music and baking titles collection. Each point 

represents a type or document vector, a line starting at the origin and ending at a defined 

type or document point. The (x, y) pair is defined by x = first dimension or column of 

matrix U or V multiplied by the first singular value and y = second dimension or column of 

matrix U or V multiplied by the second singular value for type and document points, 

respectively. Looking at the vectors for the types and documents, the types most similar to 

each other and the documents most similar to each other are determined by the angles 

between vectors. If two vectors are similar, then they will have a small angle between 

them. In table 5, the documents M4, “A Perspective of Rock Mu- sic in the 90’s,” and M1 

“Rock and Roll Music in the 1960’s” are the closest documents to document M3, “Drum 

and Bass Composition,” and yet they share no types in common. Similarly, the type vector 

for “music” is closest to type vectors “rock” and “composition,” however, the next closest 

type vector corresponds to the type vector for “drum.” This similarity is notable because 

“music” and “drum” never co-occur in the same document.  ”[6] 



TABLE 5



Acknowledgement  

Although the SVD is an easy way to explore the underlying meaning of texts, it will deviate 

from “ the actual recomputation of the reduced rank space using the same data to some 

extent ”  because the update is based on Ak and not the original matrix A. [12]

Summary  

Latent semantic analysis (LSA) uses reduced rank space model to exploit the latent 

semantic structure of type-document associations. Creating, calculating, and using the 

reduced rank vector space model is based on SVD .
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