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Abstract

The central object of study of this thesis is inverse mean curvature vector flow of
two-dimensional surfaces in four-dimensional spacetimes. Being a system of forward-
backward parabolic PDEs, inverse mean curvature vector flow equation lacks a gen-
eral existence theory. Our main contribution is proving that there exist infinitely
many spacetimes, not necessarily spherically symmetric or static, that admit smooth
global solutions to inverse mean curvature vector flow. Prior to our work, such solu-
tions were only known in spherically symmetric and static spacetimes. The technique
used in this thesis might be important to prove the Spacetime Penrose Conjecture,
which remains open today.

Given a spacetime (N*,g) and a spacelike hypersurface M. For any closed surface
Y2 embedded in M satisfying some natural conditions, one can “steer” the spacetime
metric g such that the mean curvature vector field of ¥ becomes tangential to M
while keeping the induced metric on M. This can be used to construct more examples
of smooth solutions to inverse mean curvature vector flow from smooth solutions to

inverse mean curvature flow in a spacelike hypersurface.
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Introduction

1.1 Motivation: Mass in General Relativity

General relativity is the study of large scale structures of the universe. One funda-
mental object in general relativity is the notion of mass. Pointwise energy density
and total mass of a spacetime are both well-defined in general relativity. However,
the local mass of a given region in a spacetime (called quasi-local mass), as well as
the relationship between local mass and pointwise energy density and total mass of
the spacetime are still not very well understood.

Despite of many attempts in defining the quasi-local mass (e.g. [2, 3, 5, 15, 16,
24, 47]), none of the proposed functionals satisfy all the desired properties. One
such natural property is that the total mass of the spacetime should be bounded
from below by the mass of a region in it, assuming some positivity condition on the
pointwise energy density (e.g. dominant energy condition).

Given a spacetime (N*,g) and a complete asymptotically flat spacelike hypersur-
face M3 (also called a slice) with the induced Riemannian metric g. Let k be the

second fundamental form of M. The triple (M3, g, k) is called a Cauchy data of this



hypersurface (see Figure 1.1 below).

e v/\
> / e

(M>3. k)

FI1GURE 1.1: Slice in a spacetime with Cauchy data.

There is a well-defined quantity called the ADM mass (defined by R. Arnowitt,
S. Deser and C. Misner in [1]) that measures the total mass of this hypersurface.
Suppose M has a compact outermost minimizing surface ¥. Physically, ¥ can be
viewed as the apparent horizon of blackholes.

In the case that M is totally geodesic, i.e. k = 0, then the pointwise energy density
equals the scalar curvature of M. In this case, the Riemannian Penrose Inequality

states that:

Theorem 1.1 (Riemannian Penrose Inequality). Let M and ¥ be given as above. If

the scalar curvature of (M, g) is non-negative, then its ADM mass is greater than or

equal to A/|X|/16m, where |X| is the total area of ¥ (see Figure 1.2).

Penrose [37] first conjectured this inequality in 1973, and he gave a heuristic proof
based on physical considerations, explained as follows. It turns out that the lower
bound \/|E|/—167T in the Riemannian Penrose Inequality equals the Hawking mass,
which is a quasi-local mass functional proposed by Hawking [24], of the minimal
surface . This can be viewed as the mass of the blackholes inside . Thus, the
Riemannian Penrose Inequality states that the total mass of M should be at least the

mass contributed by the blackholes, assuming that the energy density (which equals



Blackholes — (N\gﬁj

FiGure 1.2: Totally geodesic spacelike hypersurface with compact outermost mini-
mal surface X.

the scalar curvature in the case of a totally geodesic hypersurface) is non-negative
everywhere.

Geroch [22], Jang and Wald [26] first discovered a monotone property of Hawking
mass of surfaces under smooth inverse mean curvature flow. Based on this, Huisken
and Ilmanen [25] gave a proof of this inequality in the case of a single blackhole (i.e.
Y. is connected). In the same year, Bray [5] proved the full Riemannian Penrose
Inequality using a different technique.

In the case of no blackholes, the Riemannian Penrose Inequality is also known as

the Riemannian Positive Mass Theorem:

Theorem 1.2 (Riemannian Positive Mass Theorem). Given a complete asymptot-
ically flat Riemannian manifold (M3,q) with non-negative scalar curvature. The

ADM mass of M is non-negative.

In 1979, Schoen and Yau [42] proved this result using a variational method. In
the same year, they [41] generalized this result to Riemannian manifolds of dimen-
sion less than eight. In 1981, they [43] removed the assumption that M is totally
geodesic and proved the Riemannian Positive Mass Theorem for an arbitrary space-

like hypersurface in a spacetime that satisfies the dominant energy condition.



1.2 Inverse Mean Curvature Vector Flow

So far all the discussions assume that our spacetime has a hypersurface with zero
second fundamental form, in which case inverse mean curvature flow naturally bridges
the Hawking mass of an apparent horizon of blackholes and the ADM mass of the
hypersurface. However, a spacetime in general does not admit such a totally geodesic
hypersurface. This is because that the second fundamental form of a hypersurface
in a spacetime has six components, but the hypersurface only has one degree of
freedom. Thus it is not generic to have all six components vanish. Therefore it is
desirable to obtain a similar bound on the total mass of the spacetime by the mass of
the blackholes without this assumption. This leads to the general Spacetime Penrose
Conjecture, which is still open today.

A viable candidate for proving this conjecture is the codimension-two analogue
of inverse mean curvature flow, called the inverse mean curvature vector flow. How-
ever, there are two major problems with this flow. First, unlike the inverse mean
curvature flow, which is a forward parabolic PDE, inverse mean curvature vector
flow is a system of forward-backward parabolic PDEs: forward parabolic in space-
like directions, and backward parabolic in timelike directions (see [25]). Backward
parabolic equations lack a general existence theory. For instance, the reverse heat
flow is backward-parabolic. Given many initial conditions, the reverse heat flow
would develop singularities instantaneously. However, the reverse heat flow would
exist for time ¢ > 0 if we first perform the heat flow for time ¢ and then start flowing
backwards.

Second, for some initial surfaces, even the inverse mean curvature vector flow
exist, their Hawking mass still won’t give us a lower bound on the total mass of the
spacetime as in the inverse mean curvature flow case simply because the former is

too large. To illustrate this, take a ¢ = constant slice in the Minkowski spacetime.



The round sphere in that slice has zero Hawking mass. Spacial perturbations will
decrease the Hawking mass making it negative, whereas timelike perturbations will
increase the Hawking mass making it positive. During inverse mean curvature vector
flow, the spacial “wiggles” will smooth out due to the parabolic nature of the flow.
However, timelike “wiggles” will get amplified since the flow is reverse parabolic in
the timelike directions. With these surfaces with positive Hawking mass, inverse
mean curvature vector flow will not provide a lower bound for the ADM mass of
Minkowski space, which is zero.

However, these two problems seem to solve each other because they are both
suggesting that solutions to inverse mean curvature vector flow exist only when the
“right” initial surface is given. The important question is then: Given a space-
time. Do such “right” initial surfaces always exist? The answer is affirmative if the
spacetime is spherically symmetric or static.

Inverse mean curvature vector flow of surfaces in spherically symmetric space-
times was first studied by E. Malec, and N. OMurchadha [31]. They showed that
inverse mean curvature vector flow of spherically symmetric spheres exist for all time.
Intuitively, the spherical symmetries prevent timelike “wiggles” to occur. Moreover,
the Hawking mass is monotonically non-decreasing under inverse mean curvature
vector flow of spacelike surfaces with spacelike mean curvature vectors, assuming the
spacetime satisfies the dominant energy condition.

Later Frauendiener [21] showed that, in an arbitrary spacetime that satisfies the
dominant energy condition, if smooth inverse mean curvature vector flow exists, then
the Hawking mass is monotonically non-decreasing. In 2004, H. Bray, S. Hayward,
M. Mars and W. Simom [8] showed that we can in fact flow along a one-parameter
family of directions and the Hawking mass is still monotone.

In spherically symmetric spacetimes, the “right” initial surfaces for inverse mean

curvature vector flow are spherically symmetric spheres. What about spacetimes
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that are not necessarily spherically symmetric?

Bray and Ye Li were trying to develop a general existence theory for inverse mean
curvature vector flow back in 2009, and one of their intuitions was that if one can
somehow control the flow of the surfaces so that they stays tangential to a spacelike

slice, then the flow might not develop singularities. In fact it has been shown that:

Proposition 1.3 ([8]). The family of closed embedded spacelike surfaces {¥s} is a
solution to the smooth inverse mean curvature vector flow with spacelike inverse mean
curvature vector fgs everywhere on the surfaces if and only if there exists a spacelike
hypersurface M3 < N, such that the mean curvature vector ﬁgs 1s tangential to M

at all (x,s), and {34} is a solution to the smooth inverse mean curvature flow in M.
Following the intuition, we prove the main theorem in Chapter 4:

Theorem 1.4 (Main Theorem). There exist infinitely many non-spherically sym-
metric, non-static spacetimes that admit inverse mean curvature vector flow coordi-
nate charts. Given such a spacetime U with an inverse mean curvature vector flow
coordinate chart (t,r,0,¢) and the constructed spacetime metric g. The coordinate

s

spheres Sy, contained in each t = constant slice, when reparameterized by r* = €°,

are smooth global solutions to the inverse mean curvature vector flow equation.

This theorem is restated and proved in Theorem 4.4. The proof is based on
explicit constructions of spacetime metrics that admit inverse mean curvature vector
flow coordinate charts, defined in Chapter 4. Theorem 1.4 seems to suggest that
spacetimes that admit smooth solutions to inverse mean curvature vector flow exist
generically. However, this general problem of find solutions to inverse mean curvature
vector flow (i.e. the “right” initial surface) in arbitrary spacetimes is still open.

There also exists a coordinate-free analogue of Theorem 1.4:



Theorem 1.5. Given a spacetime (N*,9), a spacelike hypersurface M? and a closed
embedded surface (3%, gs) € M. Suppose Y is area expanding (defined in (4.3.5)),
then there exists a unique smooth steering parameter Q = Qs € C*(N), such that
in the steered spacetime metric gq (defined in (4.5.1)), Hy, is tangential to M every-

where on .

This can be used to generate more examples of solutions to inverse mean curvature
vector flow. Consider a smooth solution to inverse mean curvature flow in a spacelike
hypersurface M. One can then smoothly adjust the spacetime metric along the flow
such that the mean curvature vector of each flow surface becomes tangential to M.
These steered surfaces are then solutions to inverse mean curvature vector flow, since
the area expanding condition is already satisfied, and now the mean curvature vectors

are tangential to a spacelike hypersurface (see Proposition 1.3).

1.3 Uniformly Area Expanding Straight Out Flows and Time Flat
Surfaces

Inverse mean curvature vector flow is a type of flow that has bad existence theory,
but very good properties: the Hawking mass is monotone under smooth inverse mean
curvature vector flow. There is another flow studied in Chapter 5, called uniformly
area expanding straight out flow (or simply straight out flow), that has solutions with
a wide class of initial surfaces. In that chapter, we try to construct spacetimes that
admit a coordinate chart in which straight out flow of coordinate spheres exists for
all time. Partial results have been obtained while complete understanding of this

problem is still work in progress:

Proposition 1.6. Suppose a spacetime (N*,G) admits a coordinate chart {t,r,0, ¢}



such that the coordinate representation of g is

2
g="| ¢ w0 (1.3.1)
0 e 0 a c
o\ f 0 ¢ b
with ab — ¢ = r*sin?@. Then e, := %a—i 1s straight out if and only if d satisfies a

second order elliptic PDE in d: Ayod + G(d,d") = 0, where G is given by (5.2.30)
and (5.2.31).

We conjecture that solutions to the above elliptic PDE always exist.

In addition to general existence, another reason for studying the straight out flow
is that the Hawking mass is also monotonically non-decreasing under such flow (e.g.
see [9], [10]) if the spacetime also satisfies the dominant energy condition.

The general existence of straight out flows can serve as a disadvantage since
we can even flow surfaces with positive Hawking mass, too large to be used as a
lower bound of the total mass of some spacetimes, in straight out directions. To
see this, again consider the Minkowski spacetime. All surfaces that are contained in
a spacelike plane have non-positive Hawking mass. Thus, non-planer surfaces have
positive Hawking mass. For such surfaces, inverse mean curvature vector flow would
not work since there are time “wiggles”. However, those surfaces can still flow in
straight out directions. Since the total mass of Minkowski space is zero, having a
surface with positive Hawking mass is not going to give us a lower bound for the
total mass since the Hawking mass is monotone.

Inverse mean curvature vector flow and uniformly area expanding straight out
flow are two special cases of uniformly area expanding flows: orthogonal flows such

that the rate of change of the area form of each flow surface equals the area form

8



itself. The Hawking mass is not necessarily monotone under general uniformly area
expanding flows. H. Bray, J. Jauregui and M. Mars very recently ([9], [10]) obtained
a variational formula of the Hawking mass under general uniformly area expanding
flows, which consists of four major terms (see [10]). The first three terms are non-
negative if the spacetime satisfies the dominant energy condition. The fourth term
is an integral term with integrant a function of the spacetime multiplied by the
divergence of the connection one-form associated with their mean curvature vector
of the flow surfaces. Thus, if the connection one-form is divergence free, then the
fourth term vanishes and the Hawking mass is monotone. Surfaces with divergence
free connection one-form associated with the mean curvature vectors are called time-
flat (defined in [9], [10]). While the conditions on inverse mean curvature vector flow
coordinate chart can be viewed as a global “flatness” condition on the surface, the
time-flat condition is a local “flatness” condition.

The organization of this thesis is given as follows. In Chapter 2, we study the
monotonicity of Hawking mass under smooth inverse mean curvature flow. In Chap-
ter 3, we study inverse mean curvature vector flow in spherically symmetric space-
times. The notations used in this thesis are also introduced in that chapter. In
Chapter 4, we prove the main theorems 1.4 and 1.5. In Chapter 5, we study uni-
formly area expanding straight out flows, and prove Proposition 1.6. Finally in

Chapter 6, some open problems and future works are discussed.



2

Huisken-Ilmanen Inverse Mean Curvature Flow and
Monotonicity of Hawking Mass

In this chapter we study inverse mean curvature flow of a closed embedded surface
Y2 in an asymptotically flat Riemannian manifold (M3, g). The motivation is the

Riemannian Penrose Inequality:

Theorem 2.1 (Riemannian Penrose Inequality). Let (M3, g) be a complete, asymp-
totically flat Riemannian manifold with non-negative scalar curvature and a compact

outermost minimal surface ¥ of total area ||, then

with equality if and only if (M3, g) is isometric to the Schwarzschild metric with mass

<R3\{O}, (1 + %)4 5U> (2.0.2)

outside their respective outermost minimal surfaces.

m > 0:

10



] here can be viewed at the apparent horizon of blackholes. The lower bound for

the ADM mass, % has the physical interpretation as the mass of the blackholes.

Penrose [37] first conjectured the Riemannian Penrose Inequality in 1973, and he
gave a heuristic proof based on the physical considerations. In 2001, Huisken and
[Imanen [25] proved this inequality using inverse mean curvature flow in the case of a
single blackhole. In the same year, H. Bray [5] proved this inequality using conformal
flow of metrics that works for any number of blackholes. In 2009, H. Bray and D.
Lee [13] generalized the inequality to all dimensions less than eight. In 2010, Lam
[28] proved the Riemannian Penrose Inequality for graphs in all dimensions. In 2011,
Schwartz [45] proved a volumetric version of the Penrose inequality for conformally
flat manifolds. The general Spacetime Penrose Conjecture is still open today (see
[33, 11, 12, 33] for more discussions of this conjecture).

In Section 2.1, we define asymptotically flat manifolds, ADM mass and Hawking
mass of closed surfaces. In Section 2.2, we study the Geroch, Jang-Wald monotonicity
formula of Hawking mass under smooth inverse mean curvature flow. In Section 2.3,
we briefly discuss Huisken and Ilmanen’s proof of the Riemannian Penrose Inequality

using such flows.
2.1 Asymptotically Flat Manifolds, ADM Mass and Hawking Mass

Definition 2.1.1. An n-dimensional Riemannian manifold (M™, g) is called asymp-

totically flat if it satisfies the following two conditions:

(1) There exists a compact set K < M and a diffeomorphism
¢: E:=M\K — R"\B,

where By is the unit open ball in R™; and

11



(2) In the coordinate chart (xz', 2% -+, x") on E induced by the above diffeomor-
phism ®, called an asymptotically flat coordinate chart, the metric components
gi; and the scalar curvature R satisfy the following decay conditions at any

pointxe K, i,5,k,l=1,2,---.n

(1) gij(z) = 0i5(x) + O(|z|7P);
(2) |2llgiji(2)] + |2?|gijp ()] = O(|z]|P);
(3) |R(z)| = O(|=[7),

with some constants p > anz and ¢ > n. Here g;j; and g;jp are coordinate

derivatives.

E is called an asymptotically flat end of M. An asymptotically flat manifold can

have multiple asymptotically flat ends.

Definition 2.1.2. Given an asymptotically flat Riemannian manifold (M™,g) and
asymptotically flat coordinate chart. The ADM mass of of M 1is:
mapm (M, g) := lim ———— J Z Giji — i)V dS, (2.1.1)
S

7“—>002’)’L—1wn1 i1

where wy, 1 is the volume of the (n—1)-dimensional round sphere; S, is the coordinate
sphere of radius r; v is the outward unit normal along S,; and dS, is the volume form

of S,.

The ADM mass of an asymptotically flat manifold was defined by Richard Arnowitt,
Stanley Deser and Charles W. Misner [1]. They proved that the above definition is
independent of the choice of asymptotically flat coordinate charts. Thus, the notion
of the ADM mass is well-defined. We sometimes simply write mapy(g) instead of

mapn (M, g) if the underlying manifold is clear.

12



In dimension 3, we have

mapa (M3, g) = lim —J Z Giji — Gii )V dS;. (2.1.2)
S,

i,7=1

Definition 2.1.3. Given a Riemannian manifold (M3, g) and a closed embedded

surface (X2, gs) with the induced metric. The Hawking mass of 3 is defined to be:

B J 2

where Hy, is the scalar mean curvature of ¥ in M.

Example 2.1.1 (Euclidean Space). R"™ with the standard Euclidean metric is an

asymptotically flat manifold with zero ADM mass.

Example 2.1.2 (Conformal Transformation of Metric). Given an asymptotically flat

manifold (M"™, g). Consider a conformal transformation g = uﬁg of the metric g,
with w e C®(M), v > 0. By Equation (A.5.14) the scalar curvatures R and R of g

and g respectively, are related by:

— _n+2 4(n —1)

If uw and its coordinate derivatives satisfy the following decay conditions, i,j,k =

1,2,--- ,n:
(1) u tends to 1 at oo;
(2) wi = O(lz["7);
(3) ugw = O] 772);

(4) Agu = O(|z[™%)

13



in an asymptotically flat coordinate chart of (M™, g) for some constants p > ”T_Q and

q > n, then (M"™,q) is also asymptotically flat in that coordinate chart. Moreover,

) 2 0
maprm(G) = mapn(g) — lim udST, (2.1.5)

r—o (N — 2)wn—1 Jg. ov

ou

where 3 is the outward normal deriwative of u along S,.

Example 2.1.3 (Schwarzschild Manifold). Combining Example 2.1.1 and 2.1.2, con-
sider the following one-parameter family of conformal transformations of (R™\{0}, d;;),

parameterized by a constant m > 0:

<R”\{O}, (1 + %) - 5) . (2.1.6)

This is called the Schwarzschild manifold of dimension n and mass m. It is easy to

verify that u = 1 + M% satisfies the desired decay condition to make the resulting
metric asymptotically flat. m is called the mass because the ADM mass of this metric

is exactly m. This can be seen quite easily for the three-dimensional Schwarzschild

4
manifold: <R3\{0}, (1 + %) 5Z> By Equation (2.1.5):

4
m o1 0 m
Hapn ((l " m) ‘5”'> = maow(0) = i on L 5 (15 57) as:

1
= — lim —J 2 das,
r—0 27 S, 2
1
= lim — —r 247
r—o 27
fd m (2.1.7)

We now study further the geometry of the three-dimensional Schwarzschild man-
ifold. Let r :=|z|. First, note that the Schwarzschild metric is symmetric under the

14



mapping r — T—f. Thus the Schwarzschild manifold has two ends, with the center of

symmetry being 5+ = %, that is r = 2, which is a two-sphere. Recall that if g = u*6
for some positive function u, then the mean curvature of a sphere of radius r with

respect to g is given by:

oL (2 + 4du) (2.1.8)

r  wdr

Therefore at r = %, the mean curvature is zero. Hence, the sphere r = % is a mini-
mal surface, which can be viewed as the apparent horizon of a blackhole. The region

outside of the blackhole is called the exterior region of the Schwarzschild manifold:

(RP’\BZL, (1 + %)4 5) .

The exterior region is an asymptotically flat end (see Figure 2.1)

- = E Slml.n’2

F1GURE 2.1: Exterior region of three-dimension Schwarzschild manifold with bound-
ary the minimal sphere S=. Figure courtesy of Mau-Kwong G. Lam.

There exists an isometric embedding of the three-dimensional Schwarzschild man-

ifold into R* such that
w?

= — + 2m.
r8m+m

The image of this embedding is a parabola (see Figure 2.2), and the minimal sphere

S% gets mapped to the sphere Sa, < R*:

15



R-I

w

S?m

FIGURE 2.2: Isometric embedding of three-dimensional Schwarzschild manifold into
R*.

The area of Sm is then given by the Euclidean area of Sop,: [Sm| = 4m(2m)* =

16mm?2. Therefore

[|Sm 0
7

Combing this with the ADM mass (2.1.7), we see that

Proposition 2.2. The ADM mass of the three-dimensional Schwarzschild manifold
4

(R3\{O}, (1 + %) (51-]) equals the Hawking mass of the minimal sphere Swm, which

15 exactly m.

More generally, Huisken and Ilmanen [25] proved (see also [40]):

Theorem 2.3. Given an asymptotically flat Riemannian manifold (M™,g) and an

asymptotically flat coordinate chart. Then

lim mH(ST) = mADM(M), (2110)

T—0

where S, is the coordinate sphere of radius r.
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2.2 Geroch, Jang-Wald’s Approach and Their Monotonicity Formula

Huisken and Ilmanen’s proof of the Riemannian Penrose Inequality is based on the
monotonicity property of the Hawking mass under smooth inverse mean curvature

flow, first discovered by Geroch and Jang-Wald.

Definition 2.2.1 (Inverse Mean Curvature Flow). Given a Riemannian manifold
(M3, g) and a closed embedded surface X* in M. A smooth inverse mean curvature
flow of ¥ in M is a smooth family of surfaces F : ¥ x [0,T] — M of ¥ such that
the following parabolic evolution equation is satisfied:

aF V¢

— = T 2.2.1
at Ht, te [O’ ]’ ( )

where v, and Hy is the unit outward normal vector field and scalar mean curvature

of ¥y := F(X,t), respectively.

A family of closed embedded surfaces {¥;} in M is called a smooth solution to
inverse mean curvature flow if they satisfy (2.2.1). Given such a family of surfaces

{:}. The first variation of area formula (A.3.7) implies that

d 1

— %] = H,—dAy, = |5]. 2.2.2

G5 = || Higpdds =12 (222)
Therefore the area of ¥; grows exponentially under inverse mean curvature flow.

Example 2.2.1 (Inverse Mean Curvature Flow of Spheres). Consider a round sphere
S, in R3 with radius ro > 0, and flow this sphere out by inverse mean curvature flow.

By (2.2.2), the flow surfaces are still round spheres, and the area grows exponentially.

Thus {S

w/2py ) 95 @ solution to this flow for all time.

Geroch [22], Jang and Wald [26] discovered the following nice connection between

solutions to inverse mean curvature flow and the Hawking mass:
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Theorem 2.4 (Geroch, Jang-Wald). Given (M3, g) with non-negative scalar curva-

ture. If a family of closed embedded surfaces {¥;} is a smooth solution to inverse

mean curvature flow in M, then for allt > 0,

d
i (S1) 20, (2:2.3)

i.e. the Hawking mass is monotonically non-decreasing.

Proof. Let H; and dA; be the scalar mean curvature and the volume form of ¥; in

M, respectively.

d AR 1 ,
EmH(Et)_ﬁl 167 <1_16_7r H, dAt)]

T [ - TR
= % (%)_W 16L7T|2t| (1 - 16% . H? dAt) (By Equation (2.2.2))
% <_16L7T Lt [2Htj (H)dA, + H? j (dAt)D
_ % % (1 _ ﬁ H2 dAt) + % (—% L [QHtj (H,)dA, + HQdAtD
_ % {% (1 - % L dAt> _ ﬁ . [QH,:Z(H,:) + HE] dAt} (2.2.4)
By the first variation of mean curvature formula (A.4.3):
==, () = e o) = i (225)

where Ric" is the Ricci curvature of M. Plug (2.2.5) into (2.2.4) we get:
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d |2t|{1 11

LSy =222~ | HZgA
ma () =\ 16,12~ 276x Lt v 0o
1 1

1 1
—— | 2H, |-Asx [ — ) = —RicM — —||IL|1? | + H?dA
o7 2 s () - et o) - gplime |+ s2an

%] 1 1 1 M . 3,
=Al 35+ 2H,Ay, | — ] + 2R 2IL|[* — =H?| dA
V;h >+ 1er )y, |28 g ) + 2RI o)+ 2ATLP - S HE | dA,

(2.2.6)

We now compute the first three integral terms in the above. By integration by

parts, we get:

1 1 2||Vs, Hy||”
2H,Ay, [ — ) dA :f — Vs, H,Vy,—>dA, = | 2220044, (227
[ 2, () = [ x99 gpia = [ Al 2o
Now by the Gauss equation (see e.g. [27]), we have
.M . s Lo 1 2
Ric (l/, V) = §R — K=" + §Ht — §||IIt|| s (228)
where K> is the Gauss curvature of ¥;.
Next let A;(t) and Ay(¢) be the principal curvatures of 3, then
Hy= M(t) + Xa(t),  [[TL][P = M(1)” + X ()™
Therefore
1 M@E) + @] M) = X (0)]?
||Ht||2 . 5]152 _ )\1(15)2 +)\2(t)2 . [ 1() 5 2( )] _ [ 1( ) 5 2( )] . (2.2‘9)
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Plug them back into (2.2.6), we get:

d Y (1 1 1
—m (X)) = u =+ f 20 Ay, | — ) + 2Ric™ (v, v) + 2||1L|)* - §Ht2
dt s, H B

16m {2 167 ;
|Et| 1 1 f 2||V2 Ht”2 M b 2 2 3 2
— - ‘ RM _ oK™ 4+ H? + ||IL||> — =HZ2dA
6712 " Tom s, H? * +H L[ = S HidA,
X f1 1 5o, (ult) = (1)
>4l — | —2K* dA RM >0
16712 " 167 Jy, - 2 ' ( )
1
> @ 1__ KztdAt
167 (2 87 Jy,
>0 (2.2.10)

where the last inequality follows from the Gauss-Bonnet formula:

K™ dA, < 2x () = 2m(2 — 2 - genus (X)) < 4.
¢

O

Using this, Geroch, Jang-Wald discovered a possible approach to prove the Rie-
mannian Penrose Inequality via the following steps:

e Let X be the outermost minimal surface in M. Its Hawking mass is 1'% since
its mean curvature is zero. Notice that this is the lower bound in the Riemannian
Penrose Inequality.

¢ Flow X out by inverse mean curvature flow, and assume that the flow is smooth
and exists for all time. Let {3;} be the flow surfaces. Theorem 2.4 implies that the
Hawking mass is non-decreasing.

e Let S, be the coordinate sphere of radius r in an asymptotically flat coordinate

chart of M. Theorem 2.3 implies that im mg(S,) = mapn(M).
r—00

Here is the upshot: If smooth inverse mean curvature flow of X in M exists for all
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time, and the flow surfaces approach large coordinate spheres near infinity sufficiently

fast, then:

lim my () = my(Xo) = mp(X) = 2|

- t—o0 16_’71'7

mapy (M) (2.2.11)

and this would prove the Riemannian Penrose Inequality. However, smooth solutions
to inverse mean curvature flow do not always exist. In fact, in the case that the flow
surface becomes minimal (i.e. mean curvature is zero), the flow is no longer defined
since the flow speed is the reciprocal of the mean curvature (see (2.2.1)). There are

other cases where singularities can occur:

Example 2.2.2 (Inverse Mean Curvature Flow of Disjoint Spheres). Suppose 3
s a disjoint union of two spheres. Inverse mean curvature flow of ¥ will develop

self-intersection in finite time.

Example 2.2.3 (Inverse Mean Curvature Flow of Thin Torus). Consider a thin
torus in R3, obtained as the boundary of an e-neighborhood of a large round circle.
Thus its mean curvature is positive everywhere. Now starting flowing the torus by
inverse mean curvature flow (see Figure 2.3). By the first variation of the mean
curvature (A.4.3) and the parabolic mazimum principle, the flow speed has a lower
bound. As a consequence the torus will fatten up and eventually the mean curvature
will become negative in the hole of the torus. Thus, the mean curvature must be zero

at some point. However, the flow is not defined when the mean curvature is zero.

2.3 Huisken-Ilmanen’s Approach and Level Set Formulation of In-
verse Mean Curvature Flow with Jumps

Because inverse mean curvature flow does not always have solutions, Huisken and II-

manen defined a generalized inverse mean curvature flow which always has solutions.
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OCeC

FIGURE 2.3: Inverse mean curvature flow of a thin torus which develops a singularity
in finite time. Picture courtesy of Andrew Goetz.

The basic idea is that, in this generalized flow, when a surface is enclosed by an-
other surface of less area, it jumps outward to its outermost minimal area enclosure
(see [25, 5, 6]), and then resume inverse mean curvature flow. Huisken and Ilmanen
used a level set formulation to characterize this jumping phenomenon. Consider a

scalar-valued function f on M, and let ¥, be the level set of f:
Yy ={xe M|f(x) =t}

In this setting, the inverse mean curvature flow equation (2.2.1) becomes:

(VY

In the above, notice that the left hand side is the mean curvature of ¥;, and the right
hand side is the reciprocal of the flow speed. Thus when |V f| # 0, equation (2.3.1)
describes inverse mean curvature flow of the level sets. Note that this formulation
allows jumps in a natural way, since if f is constant on some region of M, then the
level sets of f would just jump over that region during the flow. Huisken and Ilmanen
defined a weak solution to (2.3.1) using an energy minimization principle, and proved
existence of such a weak solution by regularizing the degenerate elliptic equation

(2.3.1). They showed that the Hawking mass is still monotone as in the smooth
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inverse mean curvature flow case. In particular, the Hawking mass is non-decreasing
during jumps. In this way, they proved the Riemannian Penrose Inequaltiy (2.1) in

the case of a single blackhole (i.e. the outermost minimal surface ¥ is connected).
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3

Inverse Mean Curvature Vector Flow in Spherically
Symmetric Spacetimes

In this chapter, we study inverse mean curvature vector flows in spherically sym-
metric spacetimes. The motivation comes from the fact that despite lack of general
existence theory, inverse mean curvature vector flow always works in spherical sym-
metry. In Section 3.1 and 3.2, terminologies and notations used in later discussions
are provided. In Section 3.3, we study closed embedded codimension-two surfaces in
a spacetime and the geometry of their normal bundles. We define mean curvature
vector fields and Hawking mass. We then define inverse mean curvature vector flow
of a closed embedded surface. In Section 3.4, we show that spherically symmet-
ric spheres are smooth global solutions to inverse mean curvature vector flow, and
the Hawking mass is monotonically non-decreasing if the spacetime also satisfies the

dominant energy condition.
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3.1 Spacetime, Einstein Equation, Dominant Energy Condition

A spacetime (N*, g, V) considered in this thesis is a connected, smooth, time-oriented,
four-dimensional manifold with Lorentian metric g of signature (—, +, +,+). V is

the associated Levi-Civita connection. A tangent vector of N is called (see Figure

3.1)
1. timelike if g(v,v) < 0;
2. null if g(v,,v) = 0;

3. spacelike if g(v,,v) > 0.

11
J / nu

~~ " outward spacelike

FIGURE 3.1: Timelike, null and spacelike vectors in spacetime.

N is called time-orientable if it admits a smooth timelike vector field T. N is
time-oriented if such a vector field T is chosen. A vector field X is called future-
pointing if g(X, ’f) > 0, or past-pointing if g(X, f) < 0.

(-,+) 1= (-, )7 is used to denote the inner product with respect to g, unless other-
wise specified.

A vector field X € I'(T'N) is said to be timelike (resp. null or spacelike) if at

every point p € N, X(p) is timelike (resp. null or spacelike). A submanifold M of N
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is said to be timelike (resp. null or spacelike) if every tangent vector of M is timelike
(resp. null or spacelike).
Let Ric" and R be the Ricci curvature and scalar curvature of the spacetime

respectively. The Einstein curvature tensor G is defined as:
N lon
G := Ric" — §R - 7. (3.1.1)
We assume that the spacetime satisfies the Einstein Equation:

G = 8xT, (3.1.2)

where T' is the stress energy tensor. For any tangent vectors u,v of N, T'(u,v) has
the physical meaning as the energy density going in the direction of u as observed

by someone going in the direction of v. The dominant energy condition is:
T(u,v) 20, VY u,v future-pointing, timelike. (3.1.3)
3.2 Spacelike Hypersurfaces

Given a spacetime. Consider a spacelike hypersurface M with globally defined,
future-timelike unit normal vector field n on M, and induced Riemannian metric
g = g™ by restricting the spacetime metric onto M. M is also called a slice in a
spacetime. Let k be the second fundamental form of M, then the triple (M3, g, k) is
called a Cauchy data. Given a Cauchy data and the unit normal vector field n, we

define the energy density of M as p:= T(n,n). We can compute that

_1 _ N Lon o :
= 87rG(n’ n) = . (RIC (n,n) 2R g(n, n)) (By the Einstein equation)
1 . N 1 N . . . .
= — | Ric" (n,n) + =R (n is unit time like)
8T 2
1
= Ton (RM + (tracegk)® — [|K||2) - (3.2.1)
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where RM is the scalar curvature of (M, g). We define the momentum density of M
to be a one-form J(-) on M, such that J(X) := T'(n, X), for any tangent vector field
X on M. Then:

10 =100 = o= (R () - 5%, )

7r
R :

= —Ric" (n, ) (n is normal to M)
8m
1.

= 8—7levg((k — tracegk) - g). (3.2.2)

Equation (3.2.1) and (3.2.2) follow from the Gauss and Codazzi equations respec-
tively, and they are called the constraint equations. The dominant energy condition
(3.1.3) implies that

w1, (3.2.3)

In the time-symmetric case where the second fundamental form k& = 0, we see that

W= %, and J = 0. The dominant energy condition thus reduces to R > 0.

3.3  Geometry of Codimension Two Surfaces in Spacetime

Let X be an closed, embedded, spacelike surface in N with codimension two. We
assume that ¥ is an oriented surface such that at each point the notion of “outward”
and “inward” is well-defined. Let g5, be the induced metric on ¥ from the spacetime
metric g.

3.3.1 Rank-two Normal Bundle Geometry: Normal Connection and Connection
One-form

Let N be the rank-two normal bundle of . Define a connection on N3, denoted as
V1, to be the projection of V onto NX. Notice that since ¥ is spacelike, N¥ has an
induced metric with signature (—, +). Therefore, at each point p € ¥, N,X has four

quadrants: future-timelike, past-timelike, outward-spacelike and inward-spacelike.
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Given a local orthonormal frame {ej, es} of NX. Suppose e; is outward-spacelike

and ey is future-time like, then the geometry of N,X is depicted by Figure 3.2:

52 N,¥.

FiGUurE 3.2: Rank two normal bundle at a point p on a surface with orthonormal
basis e;(p) and ea(p).

Define a linear isomorphism, denoted as “1”, on each fiber N,¥ of the normal
bundle as follows: for any orthonormal basis {u,v} of N,X such that u is outward-
spacelike and v is future-timelike, set u" := v, and then extend linearly to the entire
fiber. This definition is independent of the choice of basis, and is an involutive

isomorphism. Notice that

ut uty = (v, v) = —1 = —(u, u).

This isomorphism can be viewed as analogy of the 90° rotation in Euclidean space
(see [9]).
Given any tangent vector field X of . If v is an outward-spacelike unit normal

vector field along ¥, then:
0 = Vx{v,v) = AVxu,v).

Therefore Vv is perpendicular to v, and hence is parallel to v'. From this one can
define a one-form «, on ¥, uniquely depends on v, such that:
(X)) :={(Vxv,vo), VX el(TY). (3.3.1)
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This definition yields the following straightforward corollary (see [9]):

Corollary 3.1. For a smooth section v € I'(NX), the associated connection one-form

o, vanishes if and only if v is parallel with respect to the normal connection V=, i.e,

Vyv =0, YXel(TY).

3.3.2  Mean Curvature Vector Field, Hawking Mass and Inverse Mean Curvature
Vector Flow

We define
M:TS x TS — N, (X,Y) > (VxY)|ns (3.3.2)

to be the second fundamental form of X, where X, Y are tangent vector fields along
3, and (VxY)|yx is the projection of VxY onto the normal bundle of . Define
the mean curvature vector field of ¥ to be the trace of the second fundamental form

with respect to gs:

Hy, := tracegzﬁ. (3.3.3)

Therefore, Hy is an inward-pointing normal vector field along Y. Given any

normal vector field 7, define the mean curvature scalar in the direction of 7 to be:
Hy := —(Hy, 7). (3.3.4)

Given (X,¢gs) and the mean curvature vector Hy,, the Hawking mass of ¥ is

defined to be:

[ 12 1 - =
T 67 Jy;

where [X] is the area of the surface X.
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Definition 3.3.1. Given a spacetime (N,q) and a surface (32, gs). Define the in-

verse mean curvature vector field of ¥ to be:

According to our sign convention for H s, I, thus defined is outward-pointing.

Definition 3.3.2 (Smooth Inverse Mean Curvature Vector Flow). Given a closed
embedded surface X2 in a spacetime (N4,g). A smooth inverse mean curvature vector
flow of X is a smooth family of surfaces F : ¥ x [0,T] — N of X satisfying the

following evolution equation:

;F(x, s) = I (x,s), se[0,T] and (z,s) € B, := F(%, s). (3.3.7)
s

T > 0 could also be co. By the first variation of area formula (see Equation A.3.7
in appendix A.3), the rate of change of area form of the flow surfaces under smooth

inverse mean curvature vector flow is given by:

d L
gdAES = —(Hy_, Ix )dAs, = dAs,. (3.3.8)

That is, the rate of the area form of each surface is the area form itself, everywhere
on each surface. This is a special case of a uniformly area expanding flow first defined

by H. Bray, J. Jauregui and M. Mars in [10].
3.4 Model Spacetime: Spherically Symmetric Spacetime

In this section, we study spherically symmetric spacetimes. The main motivation
comes from the fact that, even though inverse mean curvature vector flow lacks a

general existence theory, smooth solutions still exist in many spherically symmetric
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spacetimes. Moreover, the Hawking mass is monotonically non-decreasing if the
spacetime satisfies the dominant energy condition. Thus, it is critical to understand

the geometry of spherical symmetry.

Definition 3.4.1. A spacetime (N*,g) is said to be spherically symmetric if its
isometry group Isom(N*) contains a subgroup G that is isomorphic to the rotation
group SO(3); moreover for any point p € N, the orbit of p under the action of G is

a two-sphere with metric a multiple of the standard round metric.

From the above definition, N* and standard sphere S? share SO(3) as a subgroup
in their isometry groups, thus N* share some of the symmetries with S?, and hence

the term spherically symmetric.

Proposition 3.2. If (N*g) is a spherically symmetric spacetime that admits a

coordinate chart {t,r,0, ¢}, such that G takes the form:

t r 0 10)
t [ —v(t,r) 0 0 0 \
2
P L (3.4.1)
0 0 0 r? 0
o 0 0 0 r?sin%6

where u and v are smooth functions of t and r only. Then within each t = constant
slice, smooth inverse mean curvature vector flow of coordinate sphere S, exists for

all time with monotonically non-decreasing Hawking mass.

Remark. Roughly speaking, all spherically symmetric spacetimes outside blackholes

admit such metrics as in (3.4.1).
Proof. Let g¢, be the metric on S;,, then

Ger = r°d0* + r?sin® Od?,
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and its inverse is given by:

1 1
—1 2 2
br T2 T2 Sin2 0

Let ﬁt,r be the mean curvature vector of S;,. Notice that {%, %} forms a frame

for the normal bundle of S, ,, and thus H,, can be computed as follows:

Hyp = g/ (V,05)"™

_ ] (<vaz‘aj> at> 0 )
br <at7 at> <a7’7 a’I’> "

_ 00 (<v99697 at> <v5660’ a?“>a ) +9 0¢ (<v50&¢’ at>at + <va9a¢> 6T‘>a )
br <at7 at> <a7“7 ar> " br <at7 at> <ara a?"> "

Vo,06,0 Vo,06,0r
+g?’f<< 2000, Va2, >a7«>

<v9¢ aj ) aT‘>

0 +

O +

<at7 at> ' <67"7 ar>

= ggi (Fgeﬁt +T5,0,) + 0+ gff(quﬁt + f;¢8r) (g9, is diagonal)

- 7“_12 (_%) 0, + 3 si1n2 ; (—rsj;z 0) Or (See Section A.1)

_ —%@- (3.4.2)
That is

H,, = —%%&;. (3.4.3)

The inverse mean curvature vector is:

O ﬁt,r . %
tr = ——= = =
' <Ht77’7Ht77“> <_%#ar’ _%#ar> 2l

o). (3.4.4)

o
|3

Therefore, inverse mean curvature vector flow of S;, is a reparametrization of

radial flow, and hence is smooth and exits for all time.
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To prove monotonicity of Hawking mass, recall that:

S, ) = - — H,, H,,)dA:, |, 3.4.5
mp (S,r) 167 16m SMQ( t, tr) dAy, ( )

where dA;, is the area form of S;,, and |S;,| is the area of S;,. Note that

2w
|St.r| = J dA;, = J J 2 sin 0 dfd¢
Stor o Jo

2w
= TQJ 2do

0

= 4772,

Plug the mean curvature vector of Sy, (3.4.3) into the Hawking mass equation (3.4.5),

we get:

42 1 21 21
Sip) = 11— — gl ——==0,,———=0, ) dA;,
mi(Sr) 167 < 167 Smg ( ru? ru? ) b )

1 4 1_
167 Jg,, 1r? ut?

( (67“7 ar) dAt,r)
1 2w pw 4 1 5
(1 — 16_7'(' . J;) ﬁﬁ r Slne d@ d¢)
(1 _ i) | (3.4.6)

By Equation (3.4.4), the variation of the Hawking mass of S; . along inverse mean

curvature vector flow is given by:

- r Omp (St r|1 1 Uy
I () = 52 - [5 (1 - —) ’ —] |
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Let G be the Einstein curvature tensor of (N*,g). G(d;, ;) can be computed as (see
Equation (A.1.8) in Appendix A.1):

2u, 5 1 1 202 [1 1 Uy

By the dominant energy condition (3.1.3), G(&, d;) = 0. Therefore

1 1 Uy
! <1 - u_) sl (3.4.8)
which implies that I:m(mH(Styr)) > 0, as desired. O

For any spherically symmetric spacetime in Proposition 3.2, it can then be foli-
ated by t = constant spacelike hyperplanes, and each hyperplane can be foliated by

smooth inverse mean curvature vector flow spheres (see Figure 3.3).

(N*,9)

/ \/f
@ t = constant
v slice

Str

=

FIGURE 3.3: Inverse mean curvature vector flow of coordinate spheres S;, in spher-
ically symmetric spacetime (3.4.1).
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4

Spacetimes that Admit Inverse Mean Curvature
Vector Flow Solutions

In this chapter we construct non-spherically symmetric, non-static spacetimes that
admit smooth global solutions to inverse mean curvature vector flows. Surfaces we
study here satisfy the topological and geometric setups defined in Section 3.3. In
Section 4.1, we recall the definition of inverse mean curvature vector flow and the
bad existence theory of such flows. Motivated by the spherically symmetry case, in
Section 4.2, we construct spacetimes that admit a special coordinate chart (called an
inverse mean curvature vector flow coordinate chart) in which smooth inverse mean
curvature vector flow of coordinate spheres exists for all time. We show that there in
fact exist infinitely many spacetimes that admit such coordinate charts, and hence
admit smooth solutions to inverse mean curvature vector flow.

In Section 4.3, we give a coordinate-free analogue of our construction, and show
that we can actually “steer” a spacetime metric in a certain direction to make the
mean curvature vector of a surface embedded in a spacelike hypersurface M tangen-
tial to M. Finally in Section 4.4, we discuss some generalizations of the technique

we use in constructing inverse mean curvature vector flow coordinates.
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4.1 Motivations from Spherically Symmetric Spacetimes and Main
Results

Given a spacetime (N* g) and a closed codimension two surface 3 with induced
metric gy, and mean curvature vector ﬁg, recall from Section 3.3.2 that a smooth

wmverse mean curvature vector flow of ¥ is a normal variation
F:Yx[0,T] — N, (X,s)— F(X,s)=: %,
such that

aﬁp(x, s) = Iy, (z,5), Y(x,s)e,, (4.1.1)
S

where Iy, is the inverse mean curvature vector of ¥, defined as

Hy,
<ﬁ2s 7 ﬁ29>§ .

o =
The inverse mean curvature vector flow equation 4.1.1 (same as Equation 3.3.7) is
a forward-backward parabolic PDE, forward-parabolic in spacelike directions and
backward-parabolic in timelike directions. Such a PDE lacks a general existence
theory. However, such PDEs can still have solutions if we start with the “right”
initial conditions. In spherically symmetric spacetimes, the “right” initial surfaces
are spherically symmetric spheres. Had we chosen some other sphere to start with,
inverse mean curvature vector flow is very likely to not exist. This is due to the
mean curvature vector computation in Equation 3.4.3 in spherical symmetry: it is
radial and has no components in the timelike direction, therefore the inverse mean
curvature vector flow of spheres will be contained inside ¢ = constant spacelike slices.
Geometrically, spherical symmetry eliminates all the timelike “wiggles” of the flow
surfaces, hence restricting the flow direction to be spacelike. Since the inverse mean

curvature vector flow equation is backward-parabolic only in timelike directions, in-
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verse mean curvature vector flow exists without running into singularities in spherical
symmetry (see Figure 3.3).

How do we generalize the spherically symmetric case to non-symmetric space-
times? Note that the mean curvature vector ﬁg of ¥ is a section of the normal
bundle N, and thus has a timelike component and a spacelike component. Mo-
tivated by the spherically symmetric case, intuitively if the flow surfaces all have
“purely spacelike” mean curvature vectors, we might hope to get a better existence

theory.

Proposition 4.1 ([8]). The family of closed embedded spacelike surfaces {34} is a
solution to the smooth inverse mean curvature vector flow with spacelike inverse mean
curvature vector fzs everywhere on the surfaces if and only if there exists a spacelike
hypersurface M3 < N, such that the mean curvature vector ﬁz}s s tangential to M

at all (x,s), and {35} is a solution to the smooth inverse mean curvature flow in M.

Proof. Given {¥,} a solution to the smooth inverse mean curvature vector flow with
spacelike inverse mean curvature vector fgs. Consider the hypersurface M of N
defined by the union of all the surfaces ¥, i.e. the “sweep out” region of the the
flow surfaces. Since the flow is smooth and spacelike, M is a smooth manifold which
is spacelike as well. ﬁzs is tangential to M by the construction of M. Since ¥ is of
codimension one in M, ﬁzs is parallel to the unit outward normal vector field vy,
along X, i.e.,

Hy, = —Mvs,, (4.1.2)

at each (z, s) € 3, for some smooth positive function A. A is chosen to positive since

Hs,, points inward. Therefore

2 HES )\VES )\VES %)

Iy, =

1%>
e = - e TR E:
(Hs,, Hy) {(—Avs,—Avs)  Mvs,vs,) A Hs, (4.1.3)
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where Hy, is the mean curvature scalar of ¥, in the direction of vy, defined by
Equation 3.3.4:

Hy, := —<ﬁzsa vs,) = —(=Avg,,vs,) = A

From equation (4.1.3), we see that {¥s} indeed is a solution to the smooth inverse
mean curvature flow in M.

Conversely, suppose M is a spacelike hypersurface and {¥,} is a solution to the
smooth inverse mean curvature flow in M. Assuming that ﬁzs is tangential to M
at each (z,s), we know that FIES is spacelike as well. Moreover, by reversing the

computations in equation (4.1.3), we have

- ﬁEs
[ES = =
<HES ) H25>
Thus {¥,} is a solution to the smooth inverse mean curvature vector flow equation

in N, with spacelike inverse mean curvature vectors. O

Therefore spacelike smooth inverse mean curvature vector flow solutions in N
correspond to smooth inverse mean curvature flow solutions in a spacelike hyper-
surface of N with tangential mean curvature vector fields. Huisken and Ilmanen
defined a weak notion of inverse mean curvature flow in which jumps are allowed.
This suggests the following definition of a weak solution of inverse mean curvature

vector flow:

Definition 4.1.1 (Weak Solution to Inverse Mean Curvature Vector Flow, [8]). A
family of spacelike surfaces {3} is said to be a weak solution to the inverse mean
curvature vector flow equation if there exists a spacelike hypersurface M in N con-
taining X4 such that ﬁzs is tangential to M everywhere for all s € [0,T], and {34} is

a solution to Huisken-Ilmanen inverse mean curvature flow in M (i.e. with jumps).
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Now we focus on the problem of finding spacetimes with inverse mean curvature
vector flow solutions.

Suppose a spacetime (N*,g) admits the following special foliation: N is foliated
by spacelike hyperplanes, and then within each hyperplane, smooth inverse mean cur-
vature vector flow of spheres exists and foliates the entire hyperplane. Consequently,
the mean curvature vector of the flow spheres are tangential to the hyperplane. If
N admits such a special “double” foliation (e.g. spherically symmetric spacetimes),
then N has to be topologically equivalent to (R3\B;) x R, where B; is the closed
unit ball in R3.

Suppose (N*,g) admits such a special foliation. We can use this to define co-
ordinates that generalize the spherically symmetric coordinates. We define the t-
coordinate by setting each hyperplane as t = constant, thus the t-coordinate tells us
which hyperplane we are on. For each inverse mean curvature vector flow sphere,
define A = 47r?, where A is the area of that sphere. This defines a very natu-
ral r-coordinate. Since inverse mean curvature vector flow is area expanding, the
r-coordinate is well-defined. For simplicity we assume that r > 1, i.e. the initial
spheres on each hyperplane have area 47. Then define (6, ¢)-coordinates on an ini-

tial sphere, 0 < 0 < 7w and 0 < ¢ < 27, such that the area form satisfies

A
dAg = 4(()) sin 0dfde = sin 0d0ds, (4.1.4)

7

where A(0) is the area of the initial sphere. Extend (6, ¢) by setting them to be con-
stant along perpendicular directions of the initial sphere, such that (6, ¢) coordinates

are defined for each sphere. By the extension, 6_67' will be perpendicular to each sphere.

The equation for the area form (4.1.4) will be preserved: dA, = %7;) sin @dfd¢*. See

* In smooth inverse mean curvature vector flow, d%(dAs) = —<fs, hﬂ}dAS = dA,, where dA, is
the area form of X,. The solution to this equation is dAs = e*dAg. The area of X, is thus given by
A(s) = A(0)e® = 4nr?, by the definition of the r-coordinate. Thus esA0) _ 2 Therefore the area

4

form in the r parameter is dA, = e*dAy = 68% sin dfd¢ = r? sin dOdo = ’1(;) sin 0dfde¢.
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Figure 4.1 for an illustration.

4 .
(N 1q) / 7
,"; f
/ ..f""f t=2
f
4 /
special
foliation 1
f/
IMCVF Spheres
\. f_..-”'
/
,-‘
/=0

/
/ /
I 4

FIGURE 4.1: Special foliation of a spacetime (N4,g): first foliated by hyperplanes,
then each hyperplane is foliated by inverse mean curvature vector flow of spheres.
This generalizes the spherically symmetric case in Figure 3.3.

Therefore we have proved the “only-if” direction of the following theorem:

Theorem 4.2. A spacetime (N*,g) is foliated by spacelike hyperplanes, and each
hyperplane is foliated by smooth inverse mean curvature vector flow of spheres if and
only if there exists a coordinate chart {t,r,0,¢} of N, such that in this coordinate

chart the metric has the form:

(4.1.5)

Q
I
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where u,v,a,b,c,d, e, f are smooth functions on N, and the following four conditions

are satisfied:

0o 0

0 0
2 —, = =0; 4.1.
(3) dA;, = r*sinfdode (i.e. ab— c* = r*sin?§); (4.1.8)
(4) H,, is tangential to the t = constant hyperplane; (4.1.9)

where dA;, and Hy, are the area form and the mean curvature vector of the coordinate

sphere Sy, respectively.

Proof of the “if” direction. Given a coordinate chart {t,r,0,¢} of (IN,g) such that
the g satisfies the four conditions, N is then foliated by ¢t = constant slices which
are spacelike since the metric has the form (4.1.5). For any ¢ = constant slice, the
coordinate spheres {S;,} are solutions of a normal flow since (£, 2% = (£, %} = 0.
We reparametrize the flow by setting s := C'+ 2Inr, where C' is a positive constant.

Then

d d ds 2d

On the other hand by condition (3)

d d 2
—(dA) = —(r*si = 2rsi = ZdA. 4.1.11
dr(d ) dr(r sin 0dOd¢) = 2r sin 0dfdep rd ( )

Combing the two equations above, we have d%(dA) = dA. Thus, by the first variation
of area formula, {S;,} when reparameterized by r* = Ce®, are smooth solutions to
inverse mean curvature flow. By condition (4), the mean curvature vector of S,
stays tangential to the slice, therefore {S;,} with the above reparameterization are

smooth solutions to inverse mean curvature vector flow. O
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Definition 4.1.2 (Inverse Mean Curvature Vector Flow Coordinate Chart). If a
spacetime (N4, g) admits a coordinate chart {t,r,0,¢} such that the four conditions
(4.1.6), (4.1.7), (4.1.8) and (4.1.9) are satisfied, then {t,r,0, ¢} is called an inverse
mean curvature vector flow coordinate chart, and N is called a spacetime that admits

an inverse mean curvature vector flow coordinate chart.

We sometimes refer the fourth condition (4.1.9) as the steering condition, as it
forces the coordinate spheres to stay inside the spacelike hyperplane during inverse
mean curvature vector flow.

Many spherically symmetric spacetimes admit an inverse mean curvature vector
flow coordinate chart (e.g. coordinate chart (3.4.1) with d = e = f = ¢ =0, and
a =12, b = r?sin? § and radial mean curvature vector by Equation (3.4.3)). However,
given an arbitrary spacetime (N*,7), it is generally impossible to reparametrize it
with an inverse mean curvature vector flow coordinate chart (e.g. a spacetime that
is not topologically equivalent to (R3\B;) x R). However, is it possible to construct
a spacetime that admits such a coordinate chart? In the next section we show that

we can actually construct many such spacetimes:

Proposition 4.3 (Existence of Spacetimes That Admit an Inverse Mean Curvature
Vector Flow Coordinate Chart). Let U := (R3\B;) x R < R*. There exist infinitely
many spacetime metrics of the form of (4.1.5) that admits an inverse mean curvature

vector flow coordinate chart.

Combining Proposition 4.3 and Theorem 4.2, we have the following main theorem

of this thesis:

Theorem 4.4 (Main Theorem). There exist infinitely many non-spherically sym-
metric, non-static spacetimes that admit inverse mean curvature vector flow coordi-

nate charts. Given such a spacetime U with an inverse mean curvature vector flow
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coordinate chart (t,r,0,¢) and the constructed spacetime metric g. The coordinate
S

spheres Sy, contained in each t = constant slice, when reparameterized by r* = e?,

are smooth global solutions to the inverse mean curvature vector flow equation.

4.2 Construction of Spacetimes That Admit Inverse Mean Curvature
Vector Flow Coordinate Charts

In this section we prove Proposition 4.3. Let U = (R3\B;) x R. It is easy to construct
a spacetime metric g that admits a coordinate chart {¢,r, 8, ¢} that satisfies condition

(4.1.6) and (4.1.7). Simply define

= (4.2.1)

where a,b,c,d, e, f,u,v are arbitrary smooth functions on U. Choosing two of the

three variables a,b and ¢ such that ab — c? = r*sin? § satisfies condition (4.1.8).
The fourth condition requires Ij[t,,«, the mean curvature vector field of S;,, to be

tangential to the ¢ = constant slice. This is equivalent to requiring ﬁt,r to be parallel

to %. We compute the conditions on the metric components such that this is true.

Lemma 4.5. The determinant of the spacetime metric G in (4.2.1) is given by:
9| := det(g) = (—u*v? — d®)(ab — ) + eu®(cf — be) + fu?(ce — af) (4.2.2)

= (—u*v? — d*)(ab — *) + u*(2cef — be* — af?) (4.2.3)
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Moreover, the coordinate representation of the inverse (g~ ') is given by:

t r 0 10)
t u?(ab—c?) —d(ab—c?) u?(cf—be) u?(ce—af)
|91 9l l9] |91
r —d(ab—c?)  —v2(ab—c?)+f(ce—af)+e(cf—be) —d(ce—af)
(g)fl _ [g |9l [g
0 u?(cf—be) —u?v2b—u? f2—bd> u?v?etuef+4cd?
(91 9] (9]
¢ u?(ce—af) —d(ce—af) uv?ctuef+cd? —u2v2a—u2e?—ad?
|91 9l l9] |91
(4.2.4)
Proof. See Section A.2.1 in Appendix A. m

4.2.1 Geometry of S, and the Normal Bundle NS},

Fix a ¢ = constant slice M. Let S;, be a coordinate sphere in M. We endow S,
with the induced metric from g, denoted as gs. Then in the {6, ¢} coordinate system,

gs has the following representation:

0 ¢
0 a c
gs = gls,, = (4.2.5)
o\c b
Thus its inverse metric is:
0 ¢
1 0 b —c
71 _
gg = b — 2 (4.2.6)
o\—c a

The normal bundle NS;, of S, is of rank-two. % is a nonzero section of NS,

and thus can be used as a basis for the normal bundle. Let n be a complementary
basis vector field of the normal bundle that is orthogonal to %. Since % is out-

ward spacelike, we can assume that n is future timelike. Therefore using the basis
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~—
2l
leq)
leq)

0

r)

0 .
, 35} We can write n as

n—i—i—xi—i— i—i—zi
o o Y0 T “ g

with z,y, z yet to be determined, such that
e (n, B_ar = 0;
o (n, &) =0;
e (n, a%s> =0.

We have three equations and three unknowns which give us

0 —do cf—bed ce—af 0
n=_-+—F=

ot u26r+ab—02@+ab—02%'

Lemma 4.6.

_ det(g)  det(g)  g]
(n,n) = u(ab — ) uldet(gs)  u|gs|’

where we set |gs| := det(gs).
Proof. See Section A.2.2 in Appendix A.

Remark. Caution that since n is timelike, {n, n) < 0. Thus

|wu=emmwﬂz(*m)m_

u?|gs|

Let {e,,e,} be the normalized orthonormal frame obtained from {-Z, n}:

o= o/l = e, enim
Toor'or™  wer Tt |nlg

Let

(4.2.7)

(4.2.8)

(4.2.9)



be the outward-pointing inverse mean curvature vector. The geometry of the normal

bundle of S;, is given by Figure 4.2 below. Recall that Ijlt7r points inward by our

convention.

H,,

'Hf: Hr.r?

NS,
FIGURE 4.2: Normal bundle of coordinate sphere S, ,.

4.2.2  Mean Curvature Vector of S,

Now we have a coordinate sphere (S;,, gs) with induced metric gs in (U, g, V), where
V is the Levi-Civita connection with respect to g. We have an orthonormal frame
{e,, en} of the normal bundle NS;, defined in the previous subsection. In this sub-

section we compute the mean curvature vector Flt,r of S;,. Recall the definition of
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ﬁt,r from Equation (3.3.3):

Ht,r = tracegsﬁ (By definition of ﬁm)
in 0 0 o 0 o
:gSjI (%,%) (axiawe{@aa_(ﬁ})

(By definition of II(&:}:” 57))

ij | /= 0 — 0
=94 [< ;ﬁ,eﬁer—w el en>en]

({er, en} is an orthonormal frame of NS;,)

”<V 8 er>er ]<V (9 en>en (4.2.10)

We compute the two parts in I—.ﬁfm separately. First of all
é‘ 1= 0 0 1 i 0 0

zg _ = N o zy

<v ‘ 67«> Ug <vp‘7 6.Z'j7 57“> < ZJ@ Ak 67’>

]_ =12 = —
= agg(FijgtT +1%9) (% ¢ is perpendicular to 597 a¢)

1 —t 0=t —t
= Egtr(ggeree + 295¢T9¢> + g§¢F¢¢)

1
+ ugrr(gs Fee + 295 F9¢> + 95 F )

= L |gl | [gtr(bFag 2cf;¢ + af;¢) + gjrr(bfge — 2cfz¢ + afz)(z))]
11 B
= algel 1 [Ger (%) + G (4%)] (4.2.11)
where
(%) := bl — 2Ty, + al'y,, (4.2.12)
and
(x%) := 0Ly — 2cTg, + al'y,. (4.2.13)

We now compute all the related Christoffel symbols.
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Ty = %(gtt@?ew ~Jeo.t) + 5" (2960 — Too.r) + 9" (20000 — Goo.0) + 5" (20006

- ?90,¢>)>

- % (gtt@?etﬁ — Goo) — 9" Goor + 7" Goo e + 77 (2G04 — 599@))

— % (Uz(ab — ) (2e9 — ay) + d(ab— P)a, + u*(cf —be)ay + u’(ce — af)(2cq
) %)) (4.2.14)

I B B Y B B o B B
Ly = 5 (Qtt(gm,e + Gor.p — Top) T+ 9" (gro + Jorg — Gopr) T gw(%e,e + To0.6 — Top0)

+g" (Top0 + Top.s — §9¢,¢))

1/ ... _ _ e L L

=35 <9tt(9¢t,e + Tot.o — Topt) — q 9opr T gteg%,qb + gtd)gw,e)

1 2/ 1 2 B 2 2 ¢ 2,

= m u“(ab—c*)(fo+ep—ci) +d(ab—c*)c, +u(cf —be)ay +u(ce —af)by

(4.2.15)

—t 1 . _ _ e _ . _ _ . -
Ly = B (Qtt(29¢t,¢ - 9¢¢,t) +9q (29¢r,¢ - 9¢¢,r) + 9t9(29¢>0,¢ - 9¢¢,e) + 9t¢(29¢¢7¢
- §¢¢>,¢))

1 _ _ . . _ e
=5 (Qtt(29¢t,¢ ~ Toot) — g 9epr T gt9(29¢9,¢ — Topn) T 9t¢9¢¢>,¢)

1

- 55 (u2(ab — A)(2f 4 —by) + d(ab— )b, + u3(cf — be)(2c.s — by)

+ u?(ce — af)b#,) (4.2.16)
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=r

1 —rt (o— — —TrT ()= —r — — —r —
Ly = 5 (9 t(299t,9 —To0.) + 3" (296,60 — 900.+) + 7 9(2909,9 — Joop) + 7 ¢(299¢,9

- ?99,¢>)>

1 —rt (o= —= —rr— —rf— —r — —
=5 (9 t(299t,0 —J004) =9 Joor T 9 9999,9 +4g ¢(299¢,9 - 900,¢))

1

= ﬁ< —d(ab — c®)(2e9 — ay) — [-v*(ab — ) + f(ce — af) + e(cf — be)]a,

+ (=d)(ef = be)ay + (~d)(ce — af)(2co — ay)) (4.2.17)

=r

1 —rt (— — — —rr(— — — —rl (— — —
Loy = 2 (9 "@or0 + Tors = Goo) + T Goro + Tors — Togr) + 7" G0 + Goo.s — Gos.0)

+77 (Gop0 + Top.s — §9¢,¢))

- % (grt (Goro + Tors — Tos) — T Goor + T Goo,6 + gwnge)

_ %( —d(ab—c*)(fo +eg—cy) = [-v*(ab— ) + f(ce — af) + e(cf —be)]e,
+ (=d)(cf —be)ag + (—d)(ce — af)b,e) (4.2.18)
Ty = %(gﬁ@%m — Toot) T 7" Qg — Goor) + T (2000.6 — Towo) + 7 (20566

- §¢¢,¢>)>

_ % (5”( Got.s = Toot) — T Topr + T (20906 — Tose) + §T¢§¢¢,¢)

_ ﬁ( —d(ab — ¢*)(2f,p — by) — [—v*(ab — ¢*) + f(ce — af) + e(cf — be)]b,

+ (=d)(cf —be)(2¢y — by) + (—d)(ce — af)b,qs) (4.2.19)
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With all the Christoffel symbols computed, we have:
(x) = bfge - Qszd) + affw

1
—{u2(ab — ?)[2beg — aqb — 2ce s — 2cf g + 2ceq + 2af.5 — ab]

- 2g]
+d(ab — *)[a,b—2cc, + ab,] + u*(cf — be)[agh — 2a 4 + 2acy — abg)

+ u?(ce — af)[2bcy — agb — 2bgc + ab,¢]} (4.2.20)

The terms cancel in the second line above since ab— ¢ = r*sin?#, and thus is not a
function of ¢.
Next we compute
=1 =1 =7
(**) = bree - 2CFO¢ + CLF¢¢

1
—{ — d(ab — ¢*)[2bey — g4t — 2ce s — 2cf o + 2ceq + 2af s — ab]

"~ 2[g]
— [—v*(ab — ®) + f(ce —af) + e(cf — be)][a,b— 2cc, + ab,]

—d(cf —be)lagh—2a4c+ 2ac, — aby| — d(ce — af)[2bcy — a 4sb — 2bgc + ab7¢]}
(4.2.21)
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Now plug (4.2.20) and (4.2.21) back into (4.2.11):

(3 11
Jv ey = ——
Ve ™ = ulgs

[d(%) +u® ()]

11 1 { 2 2 2 2
= ————du“(ab — c¢*) — uv*d(ab — ¢ 2()67 — 2661 — 207‘, + 2af7

+ [d*(ab — ) + v*v*(ab — ¢*) — fu*(ce — af) — eu*(cf — be)][a b — 2cc, + ab,]

+ [du(cf — be) — u?d(cf — be)][agb — 2a. 4c + 2ac.4 — ab g
; N @ .

+ [du*(ce — af) — ud(ce — af)][2bcy — a 4b — 2bgc + ab7¢]}

= lii[dg(ozb — ) + u*v*(ab — ) — fu*(ce — af) — eu®*(cf — be)][ab — 2cc,

|gs| 2|9|
+ ab,|
— L (fgab—e) (By Equation 4.2.2)
ab—c”), uation 4.2.
ulgs] 2[g] ’ v
1 4r3sim?d 1 21
Next we compute the second term in (4.2.10):
o 0 1 —t 0
IV o — e, g : T. | 2 2 &
gS< maxj,€> || ||g < ],Il> || || < ”(915 > (n ar’6€’5¢>
1 7,] o .
||n|| g4 F”<n n) (n — £; is spacelike)
g
iRt
= —gS]Finan —||n][g (g% Fee + 295 F0¢> + gs P¢¢)
|In|[z
_ |gs|9 (%) (4.2.23)

where (x) is computed in (4.2.20). Now plug (4.2.8) into the above, we get:

e\ 12 12
J<v €n> — ( 9] ) 1 (x) = —1%(*) (4.2.24)

U2|gs| |gs| u |gs|3/2

Combing (4.2.22) and (4.2.24), we have:
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Proposition 4.7. The mean curvature vector ﬁt,r of coordinate sphere Si, in the

spacetime metric g (4.2.1) is given by:

~ 21 1 (—[gh"”
H,=——e¢ +—"—"— n- 4.2.25
t, o +u PREE (x)e ( )

where (x) is given by (4.2.20).

Corollary 4.8. The mean curvature vector ﬁt,r of coordinate sphere S, is parallel
to £ everywhere if and only if (x) = 0, where (x) is given by (4.2.20). Moreover, in

this case, the mean curvature vector equals:

Hy, = —Ze, (4.2.26)

Notice the similarity between the mean curvature vector expression above and

the mean curvature vector in the spherically symmetric case in (3.4.3).

Proof. This is quite straightforward since I—.ﬁfm is parallel to % everywhere if and only

if <ﬁt7r, eny = 0. Expand this out we get:

e @%” = ‘%%m.
Since u # 0, the above is equivalent to
(*) =0,
as desired. ]

Therefore the fourth condition in the definition of inverse mean curvature vector
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flow coordinate chart is equivalent to (x) = 0, that is:

1

0=
29|

{uZ(ab — *)[2beg — 2ce. s — 2cf g + 2af 4]
+d(ab — c*)(ab — c*) . + u*(cf — be)[agh — 2a s + 2ac,y — ab ]
+ u®(ce — af)[2bcy — asb — 2bgc + ab7¢,]}

Or equivalently, using ab — ¢ = r*sin?#,

4r3sin* 6
0=[2bey—2cey,—2cfg+2afs] + d%
cf —be ce —af
m[a,gb — 2a,¢c + 2CLC,¢ — (lb}@] + A Sin2 0 [2[)079 - CL7¢b — 2[)790 + ab,¢].

(4.2.27)

Here is the upshot: Equation (4.2.27) is zeroth order in the metric component
d, thus we can choose two of the three variables a, b, c, and e, f,u,v all together 6

variables, and solve for d explicitly:

d v {[25 2 2cfo +2af ]+ L 0 0h— 20 40+ 2 bo]
= T T . 9 . € g — ZLCE 4 — 4C a — | — 404 4C ac, — Qa
4r3sin® 0 0 9 0 ¢ risinzgt? @ b 0
ce —af
o gl2bes — agb — 2bec + ab,¢]}' (4.2.28)

Thus all four conditions (4.1.6), (4.1.7) and (4.1.8) and (4.1.9) are solvable with
infinitely many solutions. Combing the above, we have proved Proposition 4.3 and
hence the main theorem 4.4.

There are six degrees of freedom in constructing our spacetime metric g that
admits an inverse mean curvature vector flow coordinate chart. Moreover, the six
free variables do not need to be spherically symmetric. The spherically symmetric
(3.4.1) metric is a special case of this large set of spacetime metrics. It is unknown if
perturbations of spherically symmetric spacetime with inverse mean curvature vector
flow coordinate chart still have inverse mean curvature vector flow solutions. More

specifically, we conjecture that:
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Conjecture 4.1. Given Minkowsk: space with inverse mean curvature vector flow
coordinate chart that can be smoothly extended to the boundary, consider a pertur-
bation of the spacetime metric. The resulting spacetime still admits inverse mean
curvature vector flow solutions (in a single spacelike hypersurface) that exist for all

time.

Notice that in Equation (4.2.28) if all the variables are smooth then d will be
smooth except possibly when sinf = 0, since d is not defined by our formula there
(see (4.2.28)). This happens at the north (0 = 0) and south pole (# = ), which are
two coordinate chart singularities, not metric singularities of the spacetime.

If ¢,e, f are chosen to be 0 at a neighborhood of the north and the south pole,
then the right hand side of (4.2.28) will be zero there. In this way d can be extended
smoothly across the two coordinate chart singularities, and will be smooth on the
entire spacetime.

Another way to extend d smoothly over the coordinate chart singularities is to
choose the metric to be spherically symmetric in a neighborhood of the north and

south pole:

t r 0 )
t | —v3(t, ) 0 0 0
2
g r 0 u?(t,r)y 0 0 (4.2.29)
0 0 0 r? 0
¢ 0 0 0 7r%sin®6

This has the advantage that d = 0 around the coordinate chart singularities. Then
extend a, b, ¢, e, f smoothly to the entire spacetime while maintaining the condition
that ab — ¢ = r*sin?6. The resulting metric still satisfies the four conditions since

smooth inverse mean curvature vector flow of spheres exists for all time in spherically
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symmetry. d will be smooth since d = 0 identically.

One could study more general asymptotic conditions for (4.2.28) to be smooth

and bounded as 6 approaches 0 or 7, but we choose not to discuss it further here.

Remark. We can actually prove that ﬁt,r takes the form (4.2.26) in inverse mean
curvature vector flow coordinates without computing it out explicitly. We now show
that as a sanity check of our computation. In inverse mean curvature vector flow

coordinates ]-_I’W is parallel to %, thus let A = \(t,r,0,¢) such that

- 0
Htr == )\—
’ or
The inverse mean curvature vector is now
. H Py 1 0
t7T 67’

tor =

_<ﬁt,raﬁt,r> - _<)\§7)‘%> - _>\u2§

By the first variation of area formula (A.3.7), the rate of change of the area form of

Sir under outward radial flow s given by

d - 0
adASt,r - _<Ht,7'7 §>dASt,r

— —(H,,, a—arw sin 0dOde
= —\u*r? sin 0dfdo (4.2.30)
Notice the left hand side of the above equals to

d d
—dAs,, = —(r*sin0dfde¢) = 2r sin 0d0dé.
dr ’ dr

Thus matching the two sides we get:

2r sin 0dfdd = —\ur? sin 0dfdo,
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that is A\ = —%% Therefore

- 21 21
G0 _ 210

=—""¢
’ or ru?or ru

which is the same as (4.2.25).
4.3 Coordinate Free Analogue and Steering Parameters

In the previous section we have shown that there exist many spacetimes that ad-
mit inverse mean curvature vector flow coordinate chart, in which the coordinates
spheres are solutions to the inverse mean curvature vector flow equation. The fourth
condition (4.1.9) in the definition of inverse mean curvature vector flow coordinates
can be viewed as a steering condition that keeps the flow direction of coordinate
spheres tangential to a spacelike hypersurface.

Given a spacetime (N4, 7, V), a spacelike hypersurface (M?, g) with induced met-
ric g, and a closed embedded surface (X, g5) in M with induced metric gg. Assuming
the normal bundle of ¥ is trivial, there is a unique unit outward normal vector field
of ¥ in M, denoted as e,. Let e; be the unit outward normal vector field of X in N
that is perpendicular to e,. Since M is spacelike, e, is spacelike and e; is timelike.

Define a local coordinate chart {#, ¢} on ¥, and let {-Z, a%} be the local coordinate

frame. Figure 4.3 depicts the above set up, in which the mean curvature vector FIE is
not necessarily tangential to M. We can extend the frame {e;, e, a—%, a%} to a frame
on a neighborhood of ¥ in N, and we will identify the frame with its extension.

Since the local frame {e, e, 6—59, %} is not fully a coordinate frame, the commu-

tator coeflicients C’fj defined as:

[0, ] = Clhiow, i € {ey, e, (4.3.1)

0.9
20 06
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are not necessarily zero. We need these coefficients to compute the connection coef-

ficients with respect this frame later.

(V3.7)

zzG M &4

%

FIGURE 4.3: Setup of inverse mean curvature vector flow steering.

With the local frame {e, e, %, %} of the tangent bundle of N, let the associated

dual frame of the cotangent bundle of N be {f;, 5, df, d¢}, where
ﬁi(ej) = 52']‘, Z,] € {t,?"}.

With respect to this dual frame, we can write the spacetime metric g as

(&3 €r 6_69 (%)
€t ( -1 0 0

[9] = (4.3.2)

where a, b, ¢ are smooth functions on N.
We want to change the metric so that Hy, is tangential to M. Recall that the
fourth condition (4.1.9) in the construction of the inverse mean curvature vector

flow coordinates is a zeroth order equation for d, the (¢, r)-metric component. This

motivates the following definition:
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Definition 4.3.1 (Steering of Spacetime Metric). Given a spacetime metric g. A

metric go on N is called a steering of g if

9o =9+ Q(B®B + 5, ®B) (4.3.3)
for some smooth function Q € C*(N). @ is called a steering parameter.
Note that the coefficient matrix for the steered metric g, is given by:

e, e 2 2

o¢

e[ -1 Q 0 0\
_ el @ 1 0 0
[90] = ) (4.3.4)
20 0 0 C

Z\0 0 ¢ b)

Q

Thus geometrically, e; and e, are not necessarily orthogonal to each other in the

steered metric (see Figure 4.4).
(N 3s)
TN gy XY
- 3)

%

FIGURE 4.4: After steering the spacetime metric g, e; and e, are not necessarily
orthogonal to each other. The metric g on M remains the same.

Definition 4.3.2 (Area Expanding Condition). X < M given as above is said to be

area expanding if

er(ab—c*) > 0. (4.3.5)
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Theorem 4.9. Let (N*,g), a spacelike hypersurface M? and a closed embedded sur-
face (32, gx) in M be given as above. If ¥ is area expanding, then there erists a
unique smooth steering parameter QQ = Qx, € C*(N), such that in the steered space-

time metric gg, FIE 15 tangential to M everywhere on 3.

Proof. To show that there exists () such that Hy is tangential to M, it suffices to
find Q such that Hy (with respect to g) is parallel to e,.

Notation: In the following the subscript ¢ will be dropped for simplicity and all
the spacetime metric will be referring to the steered metric gg,.

The computations are similar to the inverse mean curvature vector flow coordi-
nates case. We divide the computations into five steps:

Step 1: Pick a local normal variation of ¥ and let {¥,} be the variational surfaces,

s € (0,€). Since Xy = ¥ is area expanding, we can assume that this normal variation
is also area expanding. Extend {e; e,} to a neighborhood of ¥ in N such that e,
remains outward unit normal to each X, in M. Define an r-coordinate by requiring
the area of X, to be A(s) =: 47r?. Since the variation is area expanding, r is well-

defined. Extend {Z, a%} to a neighborhood of ¥ in N such that they are constant

along normal directions of > in M. By this extension % is perpendicular to each 3.
Thus there exists a function A such that e, = )\g.
0 0 0 0
raa) = A5 55l = —Aems 4.3.6
lers 5l = o 39l =~ (4.3.6)

This implies that C = 0. Similarly C%, = 0.

Step 2: After steering the metric g, e, and e; are not necessarily orthogonal to
each other. Let n be the normal vector of ¥ such that (n,e,) = 0. The computation
of n is the same as the inverse mean curvature vector flow coordinate case (4.2.7),
and we obtain:

n=e; — Qe,. (4.3.7)
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Note that {n,n) = {e; — Qe,, e; — Qe,y = —1 —2Q? + Q* = —(1 + Q?), which agrees

with (4.2.8) with our metric g,

Let e, := ﬁ = (1612965)6{” > be the unit timelike normal vector.

Step 3: With respect to the orthonormal frame {e,, e,.} of the normal bundle N,

we can write the mean curvature vector as
[__jz = <ﬁ27 67">er - <ﬁ27 €n>en' (438)

Therefore Hy is parallel to e, if and only if <ﬁg, eny = 0. Now we compute the

condition on () such that this inner product vanishes.

(Hs, eny = (traceg I, e, = g¥{(V5,0;) Ins, €n) (6,05 € {Z, 2}
= glEJ <<vai6j7 6T>67’ - <vﬁz aja en>6m 6n>

= —92(V0,0), en)en, en) = 0¥V 0,0;, €n) ((en; en) = —1)

1 1

= ¥ Vi m) = fgeiden m

1 zg t 2 7 t 1+Q2
1+ A L e

|| ||gE z]( ( Q )) grw z]( +Q2)1/2

—(14+ @Q*)'Pgdw; (4.3.9)

where w is the connection coefficients of the connection % with respect to the
metric g, and the local frame {e;, e, 5—59, a%}? which is not necessarily a coordinate
frame. This is an important difference from the inverse mean curvature vector flow
coordinates case.

Recall that

T g, _ _
wfj = §gkl(gilyj + 9i1i — Gijy + Clij + Clﬂ — Cl'ﬂ), (4310)

where Cjj := 7,,,Cf7, and Cf} is the commutator coefficients defined in (4.3.1).
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Notation: we use g,;; to denote ex(g,;), not necessarily a coordinate derivative.

Step 4: Now we compute the four connection coefficients as follows:

| P _
Wy = Egt (299i0 — Too.i + 2Ci09 — Coo:)
0

1, B o ' .
égt (2G0i9 — Go0.i + 296;C — 3:s€% ) ({a—%, %} is a coordinate frame)

1¢._ _ 0 _ _ . s 0 _ _ )

Q{gtt@ 7o — Gags +209;Cry) + 9" (2 0 — Joor T 20;,Clg) + 0+ 0}
1 _ _ _ s _ _
§{gtt(_900,t + 2GgyClp + 296¢Ct¢;) +97 (—Je0., + 2G99Crg + 290¢Cf9)}

ab — ¢’ 0 ¢ 0 ¢
-5 {(—a,t +2aC% + 2eC%) — Q(—a, + 2aC?, + 2607,9)} (4.3.11)

1, _ _
Why = §9t (Gpi0 T Toip — Gogpi + Ciog + Cigg — Cogi)

. . .0
= 7" (Gpip + Goi.o — Tooi + To;Cip + 90,C1y — 9:;€55)

1 ... 0 _ 0 _ _ _ _ _
= E{gtt(gqﬁt,/ev + Gorg — Jogr T 9¢00t09 + g¢¢Cf; + gaeCf¢ + 99¢Cf;>)

e L0 0 _ _ _ _ _
+7 G5 T Gerg — Jopr T 9¢ecfe + 9¢¢Cfe + 9990f¢ + 99¢C?¢)}

b—
_a 2|§|c {(—c,t + cCY + bCG + aCly + cCf) — Q(—c,r + cCly + bCY + aC?,
" CC%)} (4.3.12)

Wep = §9t (Goi.6 + Toi0 = Goni + Cigo + Cios — Cni)

1 0

= §§ti(§9i,¢ +Gpi — oo + 90,005 + 96;Ch — 9;9%)

= Wog (4.3.13)
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1y _
W = §9t (29616 = Tspi + 2Cis6 = Copi)
1 .0

= Egti@?m,qs —Gppi T 2§¢jCiJ¢ — 9% s )

_! 7(2g ° +25,,C% +29,,C%) + 77 (2g 0 - +2g.,,0°
3\ te T Yoot T e ~te T 29t eg) T I ro Goor T 20ep e

+ 2§¢¢Cf¢)}

bh— 2
_a 2|§|C {(—b,t +2eCY, + 26CY) — Q(=b, + 2¢CY, + 2b(]jf’¢)} (4.3.14)

Step 5: Now plug (4.3.11), (4.3.12), (4.3.13) and (4.3.14) back into (4.3.9), we

get:
<ﬁ2, en) = —(1+ QQ)VQm(bwée - cw§¢ - wabe + aw;qs)
1
=—(1+ Q2)1/2m(bw§9 — 20wy, + awy,) (By (4.3.13))
_ N ab — ¢ —a.b b 020
=—(1+Q°) pERT (—ab + 2abChy + 2beCly) + 2cc;, — 2¢Chy — 2beC,

— 2aeCY, — 22CY, — aby + e, + 2abCY) — Q(—a,b+ 2abCY + 2heCT,
+ 2cc, — 2¢*CY% — m — \ac% — 20201:1; —ab, + M‘ZQ + 2abC’f¢)}

= —%{ —e(ab— c?) + 2(ab — ) (CE + C’f;)

—-Q <_6r(ab—02) +2(ab — &) (G A67) O>}

2\1/2
= —%{er(ab —A)Q — eylab — ) + 2(ab — ) (CY + C’f;)} (4.3.15)

since C% = C? s = 0 by Equation (4.3.6). Therefore Hy, is parallel to e, if and only if

er(ab — *)Q — ey(ab — c*) + 2(ab — *)(Cf, + Cf;) = 0. (4.3.16)
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Notice that Equation (4.3.16) is zeroth order in (). Since ¥ is area expanding,

e,(ab — c*) > 0, and hence we get a unique solution

et(ab — c*) — 2(ab — ) (CY + Cf;)

er(ab — c?)

Q= (4.3.17)

[]

Lemma 4.10. e,(ab — ) = 0 if and only if H,, = —(Hx,e,) = 0, i.e. ¥ is a
manimal surface in M, where H,, is the mean curvature scalar of ¥ in the direction

of e,.

Proof. For the first claim, note that

1 1
e, (dAs) = e, (Vab — 2 = ——— ¢, (ab—c? = —— ¢, (ab—c?)dAs.
( E) ( ﬁ@ﬁd)) QW ( )ﬂ96¢> 2(ab _ 02) ( ) =
(4.3.18)

On the other hand by the first variation of area formula (A.3.7),
er(dAs) = —(Hy, e,)dAs, = H, dAs. (4.3.19)

Combing the two equations we get:

2H,, - (ab— c*) = e,(ab — c?). (4.3.20)
Therefore e,.(ab — ¢*) = 0 if and only if H,, = 0. O

An application of Theorem 4.9 is to generate more examples of inverse mean
curvature vector flow solutions. Let (N?,g) be a spacetime and (M, g) a spacelike
hypersurface with induced metric g. Suppose {3} is a solution to the smooth inverse
mean curvature flow in M. Let ﬁs and dA, be the mean curvature vector field and

area form of X, respectively. By the first variation formula,

d%(dAs) = dA,. (4.3.21)
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Theorem 4.9 allows us to steer the metric smoothly along inverse mean curvature
flow to keep H, tangential to M. Note that (4.3.21) still holds after the steering since
we are not changing the metric on M. Therefore by Proposition 4.1, in the steered
metric {¥s} is a solution to smooth inverse mean curvature vector flow equation.
One could generalize this technique to study weak solutions to inverse mean
curvature vector flow equation (defined in (4.1.1)) using solutions to Huisken-Ilmanen
inverse mean curvature flow (with jumps) in a hypersurface, but we will not give a

rigorous treatment here.
4.4  Generalizations

Given a surface (¥, gs) inside a spacetime (N*,g). Let I be the inverse mean curva-
ture vector. A more general flow than inverse mean curvature vector flow is to flow

out X in the following direction:
=1+ pI", (4.4.1)

where the 1 operation is a linear isomorphism on the normal bundle defined in
Section 3.3.1, and ( is a constant on each flow surface (hence is only a function of
the flow parameter) such that —1 < 5 < 1.

Therefore inverse mean curvature vector flow corresponds to the case where 5 = 0.
The procedure for constructing spacetimes with inverse mean curvature vector flow
solutions can be generalized to constructing spacetimes in which this more general
flow exists. The idea is to construct a spacetime metric g that admit a coordinate

chart {t, 7,6, ¢}, such that conditions (4.1.6), (4.1.7), (4.1.8) and the fourth condition:
€is parallel to ~ (4.4.2)
is parallel to —. A.
P or

are satisfied.
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5

Uniformly Area Expanding Straight Out Flows

In this chapter we study wuniformly area expanding straight out flows, or simply
straight out flows of spacelike surfaces in a spacetime. Consider a spacetime (N*,g)
and a closed embedded surfaces 3 with the induced metric gs. A straight out direc-
tion of X3, first studied by M. Mars, E. Malec and Simon [30], is a normal vector field
that has “minimal variations” along Y. Such a normal vector field is a minimizer
of a natural functional defined on the normal bundle. The Hawking mass is also
monotonically non-decreasing under smooth straight out flows assuming the space-
time satisfies the dominant energy condition. A condition for a spacetime to admit
straight out flow coordinate charts is derived in this chapter. Complete understand-

ing of such spacetimes is still work in progress.
5.1 Background and Straight Out Flow Coordinate Chart

Let (N, g) be a time-oriented spacetime and (X2, gs) be a closed embedded sur-
face. The normal bundle of ¥, N¥, has an induced metric of signature (—,+). On
each fiber N,X, the nonzero vectors get partitioned into four quadrants: outward-
spacelike, inward-spacelike, future-timelike and past-timelike. Let U*N(X) denote
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the subbundle of N that consists of outward-spacelike normal vector fields of unit
length. Given a smooth section v of UT N (), its associated connection one-form a,

on X is defined by:
a,(X) = (Vyv,vt)y VX el(TY). (5.1.1)

where | is a fiberwise linear isomorphism defined in Section 3.3. Notice that {v, v}
forms an orthonormal frame of NX.
Given another smooth section 7 of U N(X), there exists a constant 6 > 0 such

that
7 = cosh Qv + sinh O+

7+ = sinh Qv + cosh O+ (5.1.2)

Geometrically {7, 7} can be viewed as hyperbolic rotation of {v, v} by angle 6.

The associated connection one-forms are related by:

Lemma 5.1 ([9]). Let a3 be the associated connection one-form of U, then oy is

related to «, by
ay = o, —db. (5.1.3)

Let E be an energy functional on U*N(X) such that:
E(v) = f V|2 dAy, YveD(UN(D)). (5.1.4)
s

H. Bray and J. Jauregui proved the following proposition:

Proposition 5.2 ([9]). v € T'(NY), outward spacelike and is of unit length, is a

minimizer of E if and only if divs(a,) = 0.

Intuitively, a minimizer of £ is a normal vector field with “minimal variations”
along Y. Bray and Jauregui also proved the existence of such minimizers:
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Proposition 5.3 ([9]). Minimizers of E exist, and any two such minimizers differ

by a hyperbolic rotation as in (5.1.2) of a constant angle 6.

Proof. We present the proof in [9]. Fix a section v of UTN(X). Given any other
section 7, 7 and v are related by a hyperbolic rotation as in (5.1.2). Let «, and oy
be the associated connection one-forms of v and 7, respectively. By Lemma 5.1, a3

is a divergence free if and only if
0 =divg(ay) = —d*ay = —d*a, + d*df = divs(ay,) + Ax, (5.1.5)
where d* is the L?-adjoint of d on ¥. The above equation is equivalent to:

AEQ = dng(Oél,). (516)

This is a Poisson equation. By the divergence theorem, J divs (e, ) dAy = 0. There-
)

fore Equation (5.1.6) has smooth solutions. Moreover, any two solutions differ by an

element in the kernel of Ay, which consists of constant functions on . n

A minimizer of F can be viewed as a straight out direction of the surface ¥, as it

tries to level the surface as much as possible. This motivates the following definition:

Definition 5.1.1 (Uniformly Area Expanding Straight Out Flow). Given a surface
Y in a time-oriented spacetime (N*,g). Let T be a global timelike vector field. A
smooth straight out flow of ¥ in N is a smooth normal variation F : ¥ x [0, T] — N

such that

a—iF(w,s) = Buy(x), divs,(ow,) =0, | (T ,v)dA, =0, (5.1.7)
s

where (3 is chosen such that 4=(dA,) = dAs; and s € [0,T], £, := F(%,s), and v, is

a outward spacelike unit normal vector field along ¥5 with zero divergence.
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On each surface of ¥, in Definition 5.1.1, the outward-spacelike vector v, with zero

divergence is only unique up to a hyperbolic rotation with angle 6 (see Proposition
5.3). The additional condition that J (T, v,y dA, = 0 defines cach v, uniquely. This
s

condition is due to J. Jauregui.
E. Malec, M. Mars and W. Simon have studied such flows in [30], and they have

shown that given a smooth solution {¥;} to the straight out flow equation (5.1.7),

d
EmH(ZS) Z 07

i.e. that Hawking mass is also monotonically non-decreasing (also see [10]).

The goal in this chapter is to construct spacetimes that admit smooth solutions
to straight out flow equation. The idea is similar to the construction in Chapter 4.
Given U := (R*\B;) x R, where B is the unit ball in R3, we seek a spacetime metric
g on U that admit a coordinate chart {¢,r, 6, ¢}, such that g satisfies the following

four conditions:

1) (o2 =0, (5.1.8)
(2) <6—i,%>=0; (5.1.9)

(3) Area form of coordinate sphere S;, satisfies dA;, = r*sinfdfd¢; (5.1.10)

10
(4) e, := Ew is straight out, i.e. divy a., = 0; (5.1.11)

where a., is the connection one-form associated with e,.

The following definition is analogous to Definition 4.1.2:

Definition 5.1.2 (Straight Out Flow Coordinate Chart). If a spacetime (N*,79)
admits a coordinate chart {t,r,0,¢} such that the four conditions (5.1.8), (5.1.9),
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(5.1.10) and (5.1.11) are satisfied, then {t,r,0, ¢} is called a straight out coordinate

chart, and N 1is called a spacetime that admits a straight out coordinate chart.

5.2 Construction of Spacetimes That Admit Uniformly Area Expand-
ing Straight Out Flow Coordinate Charts (work in progress)

Let U = (R*\B;) x R. Given a coordinate chart {t,r,0, ¢}, define a spacetime metric

g to be
t r 0 ¢
t{—v> d e f
gi= T[4 w00 (5.2.1)
0] e 0 a c
o\ f 0 ¢ b

for smooth functions a, b, ¢, d, e, f,u,v on U. g satisfies conditions (5.1.8) and (5.1.9).
Choosing two of the three variables a,b and ¢ such that ab — ¢? = r*sin® § satisfies
condition (5.1.10). We show that the fourth condition (5.1.11) is a second order
elliptic PDE in the metric component d.

The normal bundle of the coordinate sphere S;, has an orthonormal frame

{eq,en}, where e, = %%, and e, = s The normal vector n is the same as in
Equation (4.2.7). We compute the condition on g such that e, is straight out on
each S;,.

Notation: For the rest of this chapter, the induced metric on Sy, is denoted as
gs; V is the Levi-Civita connection with respect to g; [g| and |gs| are determinants
of g and gg respectively; and the subscript e, is omitted from a,, whenever there is

no confusion.
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5.2.1 Computation of The Connection One Form and Its Divergence

In terms of the frame {df,d¢} for T*S;,, write a = apdf + ayd¢, where

ag (;9> = <V 2 er,€ el (By definition 5.1.1)

= (Vieren) = < e(uar)’H_zH>

0 11 0
(@ “vi: 2
<( /u)’eﬁr uVTW |n|>

1 =l 5 1 . 5
- Ve = Vao— . 1
ul|nl| 20 Or’ n> u||n|| < Fﬂ&r’n> (n is normal)
- u||n|| Lor <5t > (n is perpendicular to a_arv 6_507 %)
1 = 9]
B Lo (By (4.2.8
/| w?gs (4.2))
_ - < 2lgs|> T, - 2|§| By (129)
9] w2|gs|
Y —|§|)1/2 S
e = 2 1/2, since <0
" ( 195 (Igl = —(Ig*) 9] < 0)
Therefore
l = |9|)
% =~ alo : 5.2.2
' u?™’ (|gs| (5.2.2)

By a similar computation, we have:

g L= (—[g]
Qg =« (&b) UQF‘” ( 5] ) . (5.2.3)

=N 12
_ 1y <M> a6 LT ( |g|) . d¢. (5.2.4)

95| u? |gs|

Therefore:
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The divergence of « is defined to be the divergence of its dual vector field, which
is 8 = Be% + B¢%, where

0 6
B =g¥ay+ gy, B = g2 an+ g5y (5.2.5)

Recall that

Definition 5.2.1. For a vector field X =Y, | X' aii in local coordinates, its diver-

gence with respect to a metric g is given by:

d, X =

< (Vi)

.
P2

Therefore the divergence of a along S, is

. . 1 & @y,
divgeors = divg = —— 3= (' losl) (& eG4

1 0 ;.0 o 0 (b 2 .
= Semd l% (5 r Sm@) —1—%(6 r 81118)
1 o 2. o .2 ¢ 2
= Tang (ﬁ,(,-r sinf + 3" -rcos@ + 5%, -r smH—i—O)

that is:

divgga = % + 8% + B cot. 0. (5.2.6)
5.2.2  Straight Out Flow Coordinate Chart: Big Picture

We expand out Equation (5.2.6), separating higher order derivatives from lower order

derivatives.
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divy o = Bfg + ﬁfb + % cot 0
00 0 0 00 0
= (95 a9 + 95¢a¢),9 + (92 Qg + g§¢a¢),¢ + (g5 o + 95¢a¢) cot 0
= (920049,9 + g?%,e + g§9a9,¢ + g?‘b%,qa) (2nd derivative in g)

00 0 9 00 0
+ (950 + gs‘fsgozd) + ggd)ag + ggf‘;o%) + (95 g + gs¢a¢) cot 6
(1st derivative in g)

= (B) + (1) (5.2.7)

From (5.2.2) and (5.2.3), oy and ay are first order in the derivative of the space-
time metric g. Therefore the divergence equation (5.2.6) is second order in the
derivative of g. In (5.2.7) above, (B) denotes the second derivative terms, and (/1)
denotes the first derivative terms.

To compute (B), notice that:

1y /—[al\ 2 ‘
9?99049,9 = g%" <__F97n (%) (plug in (5.2.2) for ay)
0
_ (_g) oy <—|§|)1/2 . (_;) o (—|§|)”2
i w2/ o "\ lgs u?) 0 gs|

L\ (=la)"”

()™ (55
St/ e

L (=g o

= —— (—) g% Ly, o + lower order derivatives in g.

u? \ |gs|

Similarly for the other three terms in (B), the highest order derivative terms are

the terms containing derivatives of the Christoffel symbols. Therefore

(B) = (C) + (12), (5.2.8)
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where

1 /g oot 06Tt POt Pt
(€)= 2 Ugs| (gs Uoro + 95 Upro + 95 Loy + 95 deaﬁ)

_ L (_|§|)1/2- L (bft — T, ,— Ty, +al, )
02 |gS | or,0 or,0 Or,¢ or,d

|95
L(=lgD)"” fmt  om T,
T2 fgsPR (brer,e — Lo = Lopg + aF¢“¢>
1 (=[g)h"?
= pgepr (D) 529

N ( 1) <—|§|)1/QJr ( 1) (—|§|)l/2 (GPT 4+ ¢%T ) (5.2.10)
— —— —— T g r g T s
u?/ 5 \ 19l u?) \lgsl/ 4 T

Notice that all the second derivatives of g in the divergence equation (5.2.7) lie
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in (D). Note that:

| _ _ e _ o _ _
FGT - 5 <gtt(get,r + Grto — g@r,t) + gt (gar,r + Grrp — 997“,7‘) + gte(gee,r + Ire0 — 991”,9)

+ ?w(g&b,r + Grp0 — Qer,¢))

1/, _ P L e
=35 (gtt(gﬁt,r +Jri0) T g Grrp T gwgeo,r + gt¢ge¢,7‘)
_ L u?(ab — (e, +dg) — d(ab — ¢*)2uuy + v (cf — be)a, + u*(ce — af)c
- 2|§| T 70 79 T T
—t 1/, _ o _ _ Y _ _
Fqbr = 5 (gtt(g¢t,T + grt,(;S - g@“,t) + gt (g¢r,r + grr,d) - g¢r,r) + gte(gqﬁﬁ,r + gr0,¢> - g¢r,9)

+g" (Gopr + Trop — %r,qﬁ))

1

= 5 (gtt (gdat,r + grt,zi)) + gtTgrr,qb + §t0§¢97r + gtd)gqbqb,r)

1
— o] (uQ(ab — A (f, +dy) —d(ab— *)2uu 4 + u*(cf — be)e, + u(ce — af)bﬁr)
g
We compute (D) as follows:
b

(D) = i[gtt (§9t,'r + grt,@) + ?tTgrrﬂ + §t9§6‘9,'r + §t¢§9¢77”]79

[?tt (gdnt,r + grt,(b) + ?trgrr,qﬁ + gteng,r + §t¢§¢¢,r],9

N O

19" Govr + Grto) + 5" Trro + 5 To00 + 5 To0.0)0

19" Gt + Trts) + T Grrs + 5 Gs0.0 + T Tsor ]

_l’_

I
= o= NI NI

it 1 — _ — — _ _ _ _
9" (09010 + VFr1.00 — CTptr0 — CTrt.p0 — Cotrs — CTrios + Wotrd T Wrt.g)

tr _ _ _ Ly, _ _
+ gt (bgrr,GG - Cgrr,d)G - Cgrr,@d) + agrr,qbqﬁ) + égte(bgaﬁ,re - ngﬁ@,r@ - Cg@@,r(b

_ 1 4, _ _ _
+ aGyprp) T §9t¢(b99¢,r9 ~ Cppro — CTosre T WGgp.rg) T (E)

= (I) + () + (II1) + (IV) + (E) (5.2.11)
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where (E) consists of lower (first) order derivatives in g:

(E) = g[yfé ot + Gr10) + 6 Grro + 90 Goos + 54~ Gos]
— SITh ot + Trrs) + 5 Tovs + T4 Tonr + T4 - T
= 515 Gony + oes) + 75 Tono + T8 Tons + 75 Tros]
51T Gonr + Tg) + T Tovo + 79 Tonr + 75 - Do,
zl_tt(be +bdg—cf —cd)—i—l_tt(— —cdg+af, +ady)
59610 0 T b 29,¢ Cer —Chp T af, T adgy

—_

1 1
+ 5705 (2burp — 2cunp) + ST (—2cuup + 2aun,y) + -7 (ba, — cc,)

DO

1 1 1
+5Ta(ca +acy) + 575 (bey —cby)+ 570 (—ee, +aby) - (see (3:211)

Therefore the fourth condition (5.1.11) becomes:

0 = divge” = % + 8% + 8% cot 0 = (B) + (I1) (see (5.2.7))
= (C) + (12) + (I1) (see (5.2.8))

_1=\1/2
_ _% ( |g|59||3)/2 (D) + (12) + (I1) (see (5.2.9))

- —%% (0 +UD + (I + (V) + (B)) + (2) + (1)
(5.2.12)

The highest derivatives of g (second derivatives) lie in (I) + (1) + (I11) + (IV).
5.2.3  Straight Out Flow Coordinate Chart: Complete Form

In this subsection, (5.2.12) is computed explicitly from left to right.
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w?(ab —
(I) = %(bew + bd’gg — Cf’ﬂg — Cd#)g — CErp — Cd79¢ + (Zf’rd) + ad7¢¢)
_ 198l g 90 d gy + b 5.2.13
= EH( 00 — 2CA gy + A pp + 0€ g — Cf,r@ —Cerp + afm). ( 2. )
Therefore
1 (=g D) = L1 (=g # lgsl
u? |gs|*? W lgs]P? 2 g

(bd g — 2¢d gy + ad gy + be g — Cf g — c€rp + af o)

1/ —1 \Y
= ( > ((bdﬁg — 2Cd79¢ + ad7¢¢) + (bQTg - Cfﬂng — 0677«(1) + afﬂ”¢)> .

"2 \gsl )
5.2.14
(1) :
—d(ab — ¢
(11) = X500 0= 2000 5+ alu) )
—d
= 0 0 =260 0+ a0, (5.2.15)
Therefore
L) 1) —dles] : :
u? gsfP? (11) = u? |gg|? 2[g] (b(u”) 00 — 2¢(u”) g + a(u”) gs)
1/ -1 \"d
= —— —(b(u?) g9 — 2¢(u?) o + alu? . (5.2.16
s () 00— 2+ o) ). (5210
(I11):

(I11) = M

27 (ba o — cCrg — Carg + QCry). (5.2.17)
g
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Therefore

1 (—[g])' 1 (—[g)"* w(cf — be)
— T . ([]]) = —— : — ba g —ccrg —ca, 4 + ac,
a qgspr ) = = g (e T G0 = e k)

cf—be 1 1
= — ba g — ccrg — ca o + ac,
PR PRE e o)

1/ -1 \"cf—b
=5 ( ) cf 6(bame — CCrp — CA gy + AC14).

lgsllgl)  ab—¢?
(5.2.18)
(1V):
20
(V) = %(bcw —cbyg — CCry + ab,g). (5.2.19)
Therefore
L (—[g])” _ 1 (=[gh"* wP(ce—af)
T2 95|32 -(IV) = T2 PREE : 277 (berg — cbrg — cCrg + ab )
ce—af 1 1

= 5 |gs|3/2 (_|§|>1/2 (bc’ﬂg — Cb7r¢9 — CCr¢ + abw)

= 5 (|gs| |§|) b — Cf (bc,r(? — Cbﬂ«e — CCr¢ + abm). (5220)

We now compute (£). First we compute the derivative of the inverse metric:

(1)

i (U2|£JS|)  (Quuglgs| +u?|gs|e)|g] — u?|gs|[gle
g = - =12
9l /4 9]

_ 2uug|gs| + 2uP|gs|cot§  w?|gs][gle (By (A.2.17))

9] 9]
2 p—
_ |_gS| <2% +2cot — @) .
9] u 9]

7



Similarly

0
" <u2|gs|> _ Quuglgs| + losts” gl — wlgsllgle
7¢

2\ gl 91?

lgs| = r*sin? )

_ 2uuglgs| u?|gsgl.
9| lg/?

_ sl (pre )
g vl

(2)
g (—d|95|> _ (=dplgs| — dlgs|e)|g] — (—dlgs])gl
’ gl / 9]
—d —2d t0 d q
_ —dolgs| — 2dlgs|cotd | |gs_||29|,e (By (A.217))
9] 9]
—d|gs| ( 19,0 )
~ =0 4 2cotf—
gl \d 9l
Similarly
g = (—dlgsl) _ (dylgs| — dW )9l — (=dlgs])gl.
“ gl /4 Is
_ —dygs] n d|gs|[gl.
- g 72
9l 9l
=l (4 )
9] d g|
(3)

7 (UQ(Cf - be)) _ (2uup(cf —be) + uP(cf —be)o)|g| — u?(cf —be)lgle
9l - g1?

2uug(cf — be) + u*(cf —be) g _ u?(cf —be)[gle

9l 9I?
_ u?(cf — be) <2% N (cf —=be)y |§|79) '
u

17 cf —be I
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Similarly

7 (uz(cf = be)) _ (2uuy(cf — be) +u*(cf —be) ) |g] — u*(cf —be)|gl 4
¢ a 912

_ 2uug(cf —be) +uP(cf —be)y uP(cf —be)lgls

9l I8
_ u’(cf —be) (2@ (cf —be)y |§|,¢)
g w =t fgl )
(4)
6 _ (uQ(ce — af)) _ (2uug(ce — af) + u*(ce — af) o) [g] — u?(ce — af)[gle
v i/ P
_ 2uug(ce —af) + w(ce —af)y  u(ce—af)[gle
I 9I°
e af) (a0t e
|q| u ce —af lgl )~
Similarly
7 = <u2(ce — af)) _ (2uuy(ce — af) + u*(ce — af) 4)[g] — v?(ce — af)[g]
“ 9l ¢ 175
_ 2uug(ce —af) +u*(ce —af) s  u*(ce —af)lgls
9l I
_ wlce—af) (2@ L lee—af)s |§|,¢>>
g u ce —af lg| )

79



Therefore

1u2|gg| ( Ug |§|9)
E) = 2— +2cotf — === ) (be, +bdyg—cf, —cd
B=y A g

1 u? g
X Lu |9s] (2@ — ||g_||¢> (—ce, —cdg+af, +ady)
u g

2 g
N —d|uT||gs| (dd cot ) — ||gg|| ) (bug — cuy) + %Hgﬂ (%b - %) (—cup
+ auy) + ;u (C“|f |_ be) (27 + (Cgf__b;)’e - ||§§||6> (ba, —cc,)

+ ;—u (C{g|_ be) ( " + (Cgf—be¢ |g|¢) —Ca + ac

Leeal) (pua | (e mala_la)

2 Tl w ' ce—af

+1u2(ce—af) <2ﬂ+ (ce —af)q |g|¢>) —cc, + ab,)
2 9] u ce —af 9]
Therefore
1 (—|g))'* 1( -1 )1/2[( o 9.6 )
S L VA R 2= + 2cot f — be,+bdg—cf,—cd
2 TosP% ) = 3\ el u o) 9 2
+ ( Y _ @) (—ce, —cdg+af, + ad,qs)]
u g

—1 \"d[(d [glo dy, [l
- - — +2cotf — bu g — Ze M _

1/ =1 \"*cf —be K ug | (cf —be)y |§|9>
+ = 2— + = — ——= | (ba, — cc,
() e (2 e ) G e

uy (cf —=be)y |7]e
2—’ -~ — y - r r
+( w cf — be |g] (zea, +acy)

-1 1/2ce—af l( Uy (ce—af)e |§|0)
- 2+ = — —= ] (bc, —cb,
Q%m) a—c |Cu T emar )t )

n (2% . (ce—af)e |g_|,¢> (—cc, + ab,r)] _

ce —af 9]

+
N —
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That is:

=12 1\~ _
LD gy % ( ) {(2ﬁ +2cotd — @) (be, +bdg—cf, — cdy)

u? |gs|** |951(9] u 19
U |§|,¢) 2d [(d,e |§|,e)
+ 12— —=——=2")(—ce, —cdg+af, +ady) — — || = +2cotld — —= ) (buy — cu,
( u g (Fee, o+ af e 9] (busg )
de 19ls cf —be [ up  (cf—be)o [glo
AN L IA s — e 2— — — ’ b r T
+ ( y 7 (—cug+auy)| + S ” + pr— 7l (ba, —cc,)
uy (cf—be)y 170 ce —af ug (ce—af)e |qle
2 2 J— ? J— r r 2_’ LA — .
+( w cf —be |g] (—eap +acy) T w ce —af g
(bc, —cb,.) + PR (ce=af)o _ |g_|,¢, (—ce, +aby)| ¢ (5.2.21)
’ ’ U ce —af |g] ’ ’

Next we compute ({12). To do that, we first have
LY (el (N ()
u=/J o |95 u |95 0
i\ 1/2 i\ =172 _ _
—Ig|> 11 (—Igl) (—Ig|,e|gs| + |g||gs|,e)
|95 u?2 \ |gs| lgs?

(
_ 5“ (%)/ - Qi <|gs| )1/2 (—|§|,e . 2gllgs| cote) (By (A.2.17)
(

s u? \ —|g| |95 |9s]?
2 _|§|>1/2 1 < _1 )1/2 3 3
= —uy [ —2 — — —1g|0 + 2|g|cot 0
u3 0 | S| 2u2 |gs||g| ( | | | | )

1/2
2U g 1(—1) _ _ )
— — = | = —g,9+2gcot9
(24— 3 () (~lola-+ 2lglcot)

1/2 —
2
e + cot b — _|g|_,9 .
u 2[g]
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Similarly we have:

(G

0
_ 1/2 — —1/2 — _
ﬂm)/_gg(—mg 2 (9] olgs| + |7l |gsta
u?2 \ |gs|

|gs|2

Then we need to compute:

Tt =t 1 = —t
g¥Ty, + 95T, = — (bT4, — cT'y,)
|95
1 1
~ 2]gsllgl (b(UQ(ab — e, +dg) — d(ab— ) 2uug + u?(cf — be)a, + u*(ce —af)c,)
gsilg

—c(u?(ab— ) (f, + dg) — d(ab— )2uu gy + u*(cf — be)c, + u*(ce — af)b,r))

1 1

= (u2|gg|(be,r +bdg —cf, —cdy) —dlgs|(2buu g — 2cuu 4)
2gsllgl

+ u?(cf — be)(ba, — cc,) + u*(ce — af)(be, — cb,r))

u2

2d cf —be

1
= i (e b = efy = ed ) = T buo — cug) + g bay — )
ce —af
I (bc, — cbm)).
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Similarly:

o=t —t 1 —t —t
gg FQT + ggd)rqﬁr = @(_CFOT + aFd)r)

1
|gs||

( —c(u?(ab— )(e, + dg) — d(ab— *)2uuy + u*(cf — be)a, + u’(ce — af)

DO | =
Qf

. cf) + a(u2(ab — 62)(]0’7 +d ) —d(ab— 02)2uu7¢ +u*(cf — be)c, + u*(ce — af)b774)>

1 1

S (u2|gs|(—ce¢ —cdg+af, +ady) — dlgs|(—2cuuy + 2auu 4)
2 gsl[g]

+ u*(cf — be)(—ca, + ac,) + u*(ce — af)(—cc, + ab’r))

_u21

2d —b
— ?H ((—ce,r —cdg+af, +ady) — ;(—cu,g + auy) + cf —be

m(—ca,r + acﬂ,)
ce —af

ab — c?

(—ce, + ab,r)) :

Putting them all together, we get:

1 —|§|)1/2(2u9 |a|9) W 1
2) = — | —% —= 4 coth — ==} - ——=((be, +bdg—cf, —cd,
(2) ;/’(Igsl u 2[g) 2 [g] (( ’ ¢)
2d cf —be ce —af
—E(buﬂ—cu,(z))—i— I (ba, — cc,) + 2 (bcm—cb,r))
1 —|§|>”2 <2u¢ |§|¢) ® 1
+ < — - == |- —=—=\(=ce, —cdg+af, +ad
%&(w u  20gl) 2 Tq (eer = e *)
2d cf — be ce —af

— —(—Cugt+auy)+ —Ca + ac,) +
u ? ’¢ ’ )

ab — c?

m(—cqr + ab,r)) .
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Simplifying (12), we get:

1/ 1 " ((2u, 9]0
(12) = 5 ( ) {(— + cot 0 — —) : ((be,,ﬂ +bdg—cf, —cdy)

|951[9] u 2[g]

2d cf — be ce —af
— Z(bU,ﬂ — CU7¢) + m(bam — CCm) + m(bqr — Cbﬁa))

2us  gle ( 2d
(2 - ) ((—ce, —cdg + af, + ady) — —(—cug +
(22 - 2 (oo — et afy 4 ad) - 2 (cug + auy)

cf — be

ab — c?

ce —af

(—ca, +ac,) +

(—ce, + ab,r)) } . (5.2.22)

ab — c?

Next we compute (I1):
9 9 9
(11) = (gg?e()ég + gsfseo% + ggqﬁag + ggfbad)) + (g% ap + gs¢a¢) cot 6
9 9 9
= (gg?o + g§,¢ + g& cot B)ap + (95% + gfgd(; + gsd) cot 0)a

_ L <—_|§|>1/2 (g%, + g2 + g% cot O)T,,
u2 |gS| S,0 S,¢ S Or

LY (=gl ) V2 ee e . o6 =t
+|l—-= )| Jsp T+ 9oy +gg cotO)I'
( ug) ( |gS| ( S,0 S,¢ S ) @

L (—lg|\"* L ~
T ( lgs| ) ((gg% + gg,gqb + g% cot O)T,, + (gg‘f; + g?ﬂ + g% cot 0)F¢T)

_. _% (%)m (1) + (1)),

where (11a) := (9%, + ggiﬁ + g% cot Q)ﬁ%, and (11b) := (gg‘; + gﬁ‘{; + g% cot Q)T;T.
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Note that
1

(I1a) = (g% + 920, + g¥ cot 0) o

(uQ(ab — (e, +dg) —d(ab— *)2uug

+u*(cf —be)a, + u*(ce — af)c,r)

u? |gs 1
= E%(Qg% + gl + 95 cot)dp + 203l (U2|QS|(9§99 + g5 + 95 cot O)e,

9 0
— 2d|g5|uu79(gg?9 + gfg’d, + g% cot ) + u*(cf — be) (g@f’@ + g27¢ + g% cot O)a,

+ u*(ce — af) (gg% + gg?d) + g% cot 0)077“).

Similarly:
1
(11b) = (ggq; + gg(l; + g? cot Q)E (u2(ab — A (f, +dy) —d(ab— c*)2uu
’ ’ g
+ u*(cf — be)c, + u*(ce — af)b,r)

u? |gs 1
= 7%(99?@ + 5% + 95" cot )d g + 207 (U2|gs|(9?@ + 955 + 98 cot 0)

9 0 0 9
— 2d|g5|uu,¢(gsfz; + ggﬁ + gS¢ cot ) + u?(cf — be) (gs‘ﬁ9 + g?q; + gsd’ cot 0)c,,

+ u*(ce — af)(gg‘fo + gﬁ‘{; + g%‘b cot «9)b7r>.
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Plug them back into (1), we get:

1 —|§|)1/2 u? lgs| (, a0 o0 06
1) =—— | — —T(g + g5, + gg cotO)d
( ) u2 (|gS| 9 |g| ( S,0 S, S ) .0

+ (ggf@ + gg‘z + gg¢ cot Q)d,qg)

1 —|§|)1/2 {Uz |95 ( 06 0 06
+|l—-= )| —=— (959 + g5, + g5 cotO)e,
( ) <|gs| 3 [g) \50 F Isp + 95 cotf)

+ (9% + 955, + g& cot G)f,r)

(=2du) |gs|
T Gl (9% + g0, + g cot O)uy + (9%, + 955, + o cot O)u)
u?(cf — be)
2[g]
u?(ce — af)
2[g]

0 0 0
((gg% + g§’¢ + g% cot 8a, + (gsibg + g?f’; + gs¢ cot 0)077“)

0 0 0
((gg% + 92@ + gge cot 0)c, + (gs‘f; + ggﬁ + gsd’ cot 0)b7r) } (5.2.23)

1 ; 1/2
(5.2.23) = 5 (u) ((ggfg + g?i + g% cot 0)d g + (g% + ggfb + g% cot 9)d7¢)

1 |gs| ks 0 0 6
+ = (— ((gg?g + gf;(ﬁ + g% cot Be, + (gsfse + g?i}, + gs‘z> cot 9)f,,1)

2d 0 . ,
u ((92?9 + gg,¢> + 929 cot f)up + (95?59 + ggqu + gS¢ cot 9)u7¢)

cf —ber oo o0, o0 06 | bb | 00

ab — 2 ((95,9 + gg4 T g cot 0)a, + (9579 + 95 + 95 cot 9)%)

ce—af 9 0 0
+ m ((gg?g + ggd) + gge cot G)CW + (gs‘f; + ggfb + gs¢ cot Q)b,r> }

It can be computed that

1
ggf)g + gjﬁf; + gfge cotl = _|g | (bg —bcoth —cy);
S
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and

1
gg‘f@ + gféji; + ggfz’ cot = _|g |(—c79 +ccotf + ay).
s

Using the above, we can simplify (/1) as follows:

1 1\
(11) = 5 (W) ((bﬁ —bcoth —cy)dg+ (—cg+ccotf + a7¢)d7¢))

1 —1 \"? Ug cf — be ce —af
N\ by — beot 6 — s =224 . )
v5 () |00 teor0 o) (e0 =200 a4 =)
U cf — be ce —af
+(—cp+ ccotf +ay) <f,r — 27d+ P L o b,,,)] . (5.2.24)

Plug (5.2.14), (5.2.16), (5.2.18), (5.2.20), (5.2.21), (5.2.22) and (5.2.24) back into

the divergence free equation (5.2.12), we get:
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=2
2(-Igsllgh? - divysa” = ~2(-lgsligh " T - (10 + (1) 4 (101) + (1v)

+ (E)) +(12) + (1) (By (5.2.12))

d
= (bdygg — 26d79¢ + ad,¢¢) + (be,rg — Cf,re —Cerp + af’m)) — @(b(lﬁ)’gg — 2c(u2)79¢

+ a(u?) 4g) + Zfb : be (ba g — cCro — Ca Ly + aCrg) + %(bc 9 = Cbro — CCrg + ab,g)
n (2% +2c0tg — 19lo ) (be, + bdg — cf, — cd.y)

u 9]
+ ( % - %) (—ce, —cdg+af, +ady) — %d [(ddg cot f — ||g;| ) (bug — cuy)
(e[ e
* (2% * (Ccf f__b§2’¢ - ||§§|7|¢> (zear + “cﬂ“)] - ffb_—cg [(2% i (Cfe_—aaf; o ||§§|7|0) |
(bey —cb,) + (2% + (C;__ac“bf]z@ = ||§§|’|¢> (—ce, + ab,r)]
— (% + cot |29|| |) ((be,r +bdg—cf,—cdy) — %d(bu,e —cug)

_ — 2
+ —Cf be(ba,r —cc,) + <-4 o (b, — Cb,r)) (ﬂ N w) ((_ce’T ~

ab — 2 ab — 2 u 2|q|

cf —be

ab — c?

ce—af

ab — c?

2d
+af,+ady) — ;(—cuye + auy) + (—ca, +ac,) + (—ce, + ab,r))

+ (bg —bcot® —cy)dg+ (—co+ccotl +ay)dy)

_b _
(bg—bcote—cd))( —2—d cf €ar+ce afcr)

U ab—c? ab—c? "

(5.2.25)

+ (—cp+ccotb +a,) <fr—2 cf +ce—afb )

CT T
ab — 02 ab — c?
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Notice that the terms underlined, up to a |gs| factor, equal the Laplacian of d
along S, (see equation (A.2.16) in Appendix A.2.3). We can simplify (5.2.25) as:
(5.2.25) = |gs|Ayed + (be g — cfro — cerp + af 1)

d

B @(b(UQ),eo —2¢(u?) g + a(u?) 4¢) + cf —be

(ba g — CCrog — €Uy + AC1e)

ab — c?

w(bcrg —byg — CCrp + ab ) + | cOtO — @ (be, +bdg—cf, —cdy)

ab—c2 " ’ ’ ’ 29| ’ ’ ’ 7
— %(—ce,,« —cdg+af, +ady)

2|g]

2d [ (dy 2uy 9]0 de 2uy  [g]e
_ 7 7 t@——’ b _ v v LY _

- [( ; ” + co 20 (bug — cuy) + g " 2071 (—cup + auy)

cf —bel ((cf—Dbe) g |7]e

0 910 5t 0) (ba, — ce.
+ab—c2[( cf — be 2|9 «© (bay = cer)
(cf —be)y gl

+ ( o be 2771 (—ca, + ac,)

N ce—af (ce—af)p _ 19].0
ab — 2 ce—af 2|

N ((ce —af)s |§|,¢) (—ce, + ab’r)]

ce—af  2lg|

— cot 6’) (be, —cb,)

2d —b _
+ (by —bcot 0 —c ) <€,r——u,9+ua L ce afc)

U ab—c2"  ab—c2 "
2d —b —
+ (—cp+ccotb+ay) (f,r - et Z‘Z — Csc,r + Zeb _Cgbw) . (5.2.26)

Definition 5.2.2. We set Ly(g) = La(d, e, f,u,a,b,c) to be the second derivative
terms in the straight out flow equation, that is:

d
Ly(q) := |gs|Aged + (be o — Cf g — CC g+ af rg) — E(b(ﬁ)’% — 2¢(u?) gy + a(u?) 4p)

cf —be
ab — 2

ce —af
ab — ¢?

(ba g — CCrg — CQrp + ACrp) + (bcrg — b g — cCrp + ab ).

(5.2.27)
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With this defintion, we further simplify (5.2.26) as follows:

(5226) LQ( )+COt0 /é‘/—i-bdg—h[\(—Cd’) |g| (b@ +bd9 f —Cd#))

2[g|
- %(—ce,r —cdg+af, +ady) — %d[ (% - % +cot 6 — |2§||g|) (bup — cuy)
<%¢ — QLu(b — %) (—cup +au¢)}
+ ZJ; : ij[ ((Ccff—_b;z,e — |2§||§T — cot 9) (ba,r - cc,r) + ((Cff—_bgz,qs - |2§||§T) :

(—ca, + acvr)]

+ ce — af [ ((Ce —al)s — |§|_’9 — cot 8) (bc, —cb,) + ((Ce —af)o — |§|’¢) :

ab — 2 ce —af 2|g| ce —af 2|9

(—ce, + ab7r)]

b _
+bge, — —Dboug + C“Z eb 00, + ceb—af 0Cr — /eﬁﬁﬁ—i——bu@cote
u — ab —
cf — af 2d cf —be
ab—ch te_ab—c2bc cot — cg4e, +;C¢u9_ab—c2c’¢a’r
ce —a 2d cf —be ce —a
T b= c{%cr Cofa 7 Catts % B be T efreatd
2d — be — 2d
_Ecu@,cotﬁ + ZJ;?CC cot 6 + aeb— fcb cotf +ayf, — o Gote
cf — be ce—af
el T apb,. (5.2.28)

90



(5.2.28) = Ly(g) + cot A(bd g — cd ) — w(beﬂq +bdg—cf, —cdy)

2[g]
1916
— ==(—ce, —cdyp+af,+ad
207 g
21 (dg  2uyg 9]0 de 2uy [9le
_u[(d_ " +c0t9—2|§| (bug —cuy) + i w20

(—cug + au7¢)]

cf —ber ((cf —be)y |gle (cf —be)y [gls
* ab — 2 [( cf —be B 2[7| _COte) (ba, —cc,) + ( cf —be - 2|§|) '

(—ca, + acv,ﬂ)]

ce—afr((ce—af)o |[Glo (ce—af)y 9l
* ab — c2 [( ce —af B 2|q| —cot@) (bey —cbr) + ( ce—af B 2|§|) '

(—ce, + abm)]

2d
+(boer —coer = cofr tapfs) = (boug = coup = cocs + apuy)
cf —be ce —af
a/b _ C2 (bvoavr - azTcad) - Cyrc»e + a’¢c7,’q) + ab _ 02 (baecyr - Cvrca¢ - bzrcye + a/yd)b’,r)

cf — be ce —af

cot 8(ba, — cc,) — T cot §(bc, — cb,)
ab—c

(5.2.29)

2d
+— cot O(bug — cuy) — e
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Finally the above can be simplified to:
Ly(g) + cot 0(bd g — cd 4) — |2g|| | (be, +bdg—cf,—cdy)— m( ce, —cdg+af,

+ ad7¢,)

2d [ (dy 2ups |gle de 2ug [g|e
o ) ) ’ b ) ) )
u l( d u  2|g] (bug = cu5) d u 2|9 (Fewo +auy)

+ cf = be[ ((Cf —bee — |§|_’9 — 2cot 9> (ba, —cc,) + <(Cf —be)o — |§|7¢’> )

ab — 2 cf —be 2|9 cf —be 2|q|

—ca, + ac, ]

Lee—aff((ce—af)o [glo (ce—af)o _[gle
— —2cotf | (bc, —cb, =

ab—c2[( Y T ) A sy S T

—cc, +ab,) ]

2d
+ (bpe, —cper—cofr+agf,)— ;(b Uy — Collp — CoCo + A yU 4)

cf — be

ab — c?

ce —af

bya, —a,cy—c,co+aysc,)+ ——
(7 ;T 5T 7¢ Ty 7¢ 1T) ab_cz

(boc, —crcp —brco+agh,).
(5.2.30)

— Jgs]Ayed + F(d, ).
Therefore we have the following characterization of the fourth condition (5.1.11):

Proposition 5.4. The fourth condition (5.1.11) is a second order elliptic PDE in
d:
Ayed+ G(d,d") =0, (5.2.31)

.. F _ _F
where G := os] = einZd”

If Equation (5.2.31) is solvable, then many spacetimes that admit straight out flow

coordinate chart exist, even beyond spherically symmetric examples. A necessary
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condition for (5.2.31) to be solvable if

G(d,d') dA,, = 0. (5.2.32)
St,'r

We conjecture that this is always the case. The verification of (5.2.32) is still work

in progress.
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6

Conclusions and Open Problems

We have constructed many examples of non-spherically symmetric, non-static space-
times that admit smooth global solutions to inverse mean curvature vector flow.
Prior to our work, such solutions were only known in spherically symmetric and
static spacetimes. Our work seems to suggest that spacetimes that admit inverse
mean curvature vector flow solutions might exist generically. However, this more

general problem is still open:

Problem 6.1. Given an arbitrary spacetime. Can we always find a “right” initial
surface such that inverse mean curvature vector flow starting with this surface exists

for all time?

Going to the big picture of relating local and global notions of mass, it is still

unknown that:

Problem 6.2. Given a spacetime that is sufficiently asymptotically flat (e.g.
Schwarzschild outside a compact set). Does the Hawking of inverse mean curva-

ture vector flow surfaces approach the total mass of the spacetime?

A natural next step is to consider the following problem:
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Problem 6.3. Given a spherically symmetric spacetime that admits an inverse mean
curvature vector flow coordinate chart. Consider a perturbation of the spacetime
metric. Does the perturbed metric admit an inverse mean curvature vector flow

coordinate chart as well?
We conjecture that this is always the case for some Minkowski spacetimes:

Conjecture 6.1. Given Minkowsk: space with inverse mean curvature vector flow
coordinate chart that can be smoothly extended to the boundary, consider a pertur-
bation of the spacetime metric. The resulting spacetime still admits inverse mean

curvature vector flow solutions (in a single spacelike hypersurface) that exist for all

time.
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Appendix A

Geometric Calculations

A.1 Ricci, Scalar and Einstein Curvature of Spherically Symmetric
Spacetime

In this subsection, we are going to compute the Ricci, Scalar and Einstein curvature
of the spherically symmetric space time (N*,7), with coordinates (t,7,6,¢), such

that g has the local coordinate representation as in (3.4.1):

t r 0 )
t{ —v(t, ) 0 0 0
2
7= r 0 u?*(t,r) 0 0 (A1)
0 0 0 r? 0
) 0 0 0 7r%sin®6

Note that {0, 0,, 0y, 03} form a local frame of the tangent bundle. We assume that
the connection on (N*,g) is the Levi-Civita connection. The Einstein summation
convention will be used, and colons will always denote the coordinate chart derivative
whereas semicolons will denote covariant derivatives.In the following, we will use
Latin letters 4, j, k,1 and so on to be indices taking values in {t,7,0,¢}. Recall the
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following formulas from Riemannian geometry:

1 :
Ffj = §gkl (Gj1i + Girj — Giju) (Christoffel symbols)
Rici; = Ric(0;,0;) =TL,, — Tl + Ti Ll = T8 T (Ricci curvature)
R = tryRic (scalar curvature)

We will write the Christoffel symbols in four matrices I'', I, I'?, and I'® as in Alan
Parry’s survey paper [[35]]. Now we compute them in sequence, using the fact that
the metric ¢ is diagonal in our coordinates.

1. The computation of I':

t 1 tt _ 11 Ut
[ = 59" (git) = 552200, = =-.

Ur
oo

Pfﬁr = Ff«t = %gtt(grt,t + Gur — gtr,t) = %#(QUU,T) =

[y =T = %gtt(get,t + Gio — o) = 0.

Fi(z) = FZ)t = %gtt(gqst,t + Gtt,p — 9t¢,t) = 0.

U ¢

Fir = %gtt(2grt,r - grr,t) = %%(21[&7,5) = v_é

o Ily=1% = %gtt(gt%,r + Grto — Groe) = 0.
¢ Fiqﬁ = Ffﬁr = %gtt(gast,r + 9.6 — Groe) = 0.
o Ty = 59" (29016 — go0.4) = 0.
o Ty =Thy = 59" (goro + Gore — gosr) = 0.
o Ty = 39" (29610 — 9ss.4) = 0.

Therefore we have

t r 60 ¢

tf= = 00
p- v o 00 (A.1.2)

ol o 0 0 0

6\ 0 0 0 0



2. The computation of I'":

Iy = %gw(zgtr,t — Gur) = %J—Q(QUU,T) = U;—f
Iy, =17 = %gw(grr,t + Gtrr — Gtrr) = %u%(Quut) = %
Ly = Ty = %grr (9ort + Giro — Gro.r) = 0.
F:ﬁqb = th = %gw (Gort + Gtrg — Gror) = 0.
Il = 20" Gy = 55 (2un,) = =5,
I7y =15 = 59" (ory + Grro — Gro) = 0.
ro =0 = 59" (Gorr + Grrg — Gron) = 0.
Thy = 3(290r0 — Goo,) = 35(—2r) = — 5.
Loy =T = 59" (9or0 + Gor.s — Yosr) = 0.
ho = 39" (206r.6 — Gpor) = 373 (—2rsin®0) = —rein’6

Therefore we have

t r 0 [0)
tf e o0 0
O 0
1—‘7‘ — r u u
of o 0o —-% 0
o\ 0 0 0 —rsine

3. The computation of I'?:

Pft = %999(2%% - Qtt,é)) = 0.
F?r = th = %999 (gte,r + gros — gtt,&) = 0.
F?@ = th = %QOG(QOG,t + G100 — Giw,0) = 0.

Ff¢ = ngt = %990(%9,15 + 99,6 — Gp0) = 0.
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90(

Fgr = %g 297”9,r - grrﬂ) = 0.

[
—

6 _ 16 _ 1 00
TH_FHT_EQ (

P?«b = FZT = %9% (9g0.r + Gro.6 — Grop) = 0.

Iy = %990999,9 = 0.

Loy =T = 39" (9600 + 900.6 — 9os.0) = 0.

Therefore we have

t r 0

t{0 0 O

T I

010 £ 0
d\0O 0 0 —sinfcosb

o F::i = %9¢¢(29t¢,t - gtt,¢) = 0.
0 Ff; = Fft = %gd)d)(grqb,t + Gior — Gine) = 0.

° ng = Fﬁt = %9¢¢(99¢,t + Gtp0 — gt0,¢) =0.
° Ff’¢ = Fﬁt = 39°%(9so.t + Gio.6 — Gto) = 0.

°

}1
<
|

e %g¢¢(29r¢,r - grr,d>) = 0.

o F(fe = Fgr = %g¢¢(99¢,r + Gre0 — gr@,d)) = 0.

6 ¢ 1 =11
o I0 =10, = 59°(Gsor + Gro0 = Iros) = 37777

o T, = 19%°(2904.0 — go0.6) = 0.

¢ ¢ 1 1
o Iy, =Ty = §9¢¢(9¢>¢>ﬁ + 906.6 — G06.6) = 3

99

11
9o0.r + Gr0.0 — Gro0) = 57227 =

¢
0
0

0

r2sin? 6

1
-

T%, = 59"(2960.6 — 9so.6) = 572(—2r*sin 6 cos §) = —sinb cos .

2rsin? 6 = %

(A.1.4)

r?2sin @ cos f = <Y



¢ _ 1 _
o I'yy = §9¢¢9¢¢,¢ = 0.

Therefore we have

t r 6 ¢
00 0 0
00 O 1
00 0
0 1 «f 9

(A.1.5)

Now we compute each of the components of the Ricci curvature with respect to

the basis {6, 0,, Oy, 0p}.

Ugty 200,

U U r u?

1.
RiCtt = RiC(&t, 5t)
_ r r 1t r o r 1t r 0 r ¢ 1
- Ftt,r - Ftr,t + FrtFtt + Frrrtt - Fttrtr - Ftrrtr + FOTFtt + I rrtt
(vv’r) (ut) N UpVy Uy, VU, VU, Uy
u? /o, u/t u v u u? u? v
1 2 Uy 1 juvy
= — | VU + v, | — —3 VU, + — — Uyt
u r u u v
2.
: _ M; _ Tt t t t 0 r ¢ 1r
RICtT’ - Rlc(éh 67’) - Ptr,t - Ftt,r + FtrFtr - Frrrtt + Forrtr + I rFtr
(v,r> (v,t> L Ut | ULy VU, Tuy
v/t v/ U ow v ou?r o ru
2 U7t
T Uu
3.
: : t T
Ricy = Ricy, = _Ftt,é) —lye = 0
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Riciy = Ricy = _Fit,d) - Fg?"@ =0
5.

: t t t 1t t t Tt t 0 0 0 10
Ric,, = Frr,t - Frt,r + Fttrrr + Ftrr:r - Frtrrt - FrrF:t - Fr@,r + FOr :r - FTGFTG
¢ ¢ ¢ o
- Fr¢,r + FqbrF:r o Fr(brrd)

U4 Uy Vi ULy Uy Uy
=2/, \3). "
v it T

N VypUp UULUp  2U,
v v V2 vou v v v u rou
Vypp  2U, Uy 1 juuy  v,u,
= — ————3uu’t+— + —
v rou v v v U
6.

Ric,¢ = Ricy, =0

Ric,4 = Ricg, = 0

Ricgg = I}, Ty + T, + Tr, Ly — Tpglg, — Ty g + 10T — T, T,

V=T N (—r) N u,—r —rl cos 0 1—r cos 0
v u? w/ gy ouw ur o ulr sind ) ,  ru? sin 6
] 1 Lyl v, 1
— _ — r— — —_—
u? u? v u?
9.
RiC@¢ = RiC¢g =0
10.

. _ Tt T r T rT? 0 o1 o1
Ricgy = I3 Lgs + Lggr + Tinlos = Toplor +Tgs0 + Tarl'gs — Taol'sg

v, —rsin® 0 —rsin® f u, —rsin®
v ., u

. . cos 6
5 5— + (—sinfcos0) g + sind cos d
u u

1 U v, 1
= (1 — —2) sin? @ + r sin® 9—’§ —rsin?g—L—
u u

v u?

sin 8
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Now we can compute the scalar curvature R of this metric as follows:

R = tr,Ric = g"Ricy + ¢""Ric,, + g”Ricgy + g*Ricgg (g is diagonal)

-1 1 2 U, Vi Uy U 1t

=—|—= vy +—-0V0, ) — —0VV, + —— — —
2 2 ’ ’ 3 ’

(% u r u v u u

v U
2 1 U, v, 1
r U U vou
lov, 21v, wu,v, wupvy uyl 1oy 2u, u,v,
u? v ru? v ud v u v3 u v2 u? w rud  uwd v
UpVyp Uy 1 2 1 1 2, 21 v,
u v3 u v or? u2 rud  ruZow

That is

20, v, 1 4du, 41v, 2 1
R=——0mm olnlr Uttt | ottt = ) 20e 22 Oy (1——2). (A.1.6)

u? v ud v u 3 w v: o rud ruto  r?

The Einstein curvature tensor G is given by

1
G = Ric — §Rg. (A.1.7)

In our case of the spacetime metric (A.1.1), we compute the components of G

with respect to the basis {0, 0,, 0, Op}:

1.

1 1 2 .
Gy = G(0;,0;) = Ricy — -Rgy = —5 | 00 + —v0, | — S,
2 u? ’ r u

1 /u 2
+ — ( ,t'U,t — U,tt) + U—R

U v 2

2u, , 1, 1



1
Gtr‘ = Grt = RiCtT — §Rgt7« = RiCn» = —— (A19)
T
. 1 .
Gi9 = Ggr = Ricyg — §R9t9 = Ricyy =0

) 1 )
Gip = Gy = Ricyy — éng = Ricyy =0

Vypr 22U, U 1 suu VU, u?
Grr Ricrr R.grr - - = _7tuut - ( “ — ) - =R
v ru vdi 7 v\ w u 2
2v u? 1
_Zr 2 4 - A.1.10
ro rz2 or? ( )
. 1 .
Gr@ = GOT = RlCre - §Rgr9 = Rlcr@ =0
. 1 .
Gr¢ = G¢r = RlCr(b — §Rgr¢ = RIC¢ =0
o Ri 1R . 1 Ll U 1 TQR
09 00— 5 9o o2 o3 v 9
r?ov oUp U oUWt Uy QU 1 U 1w
= 0 Ly R 2 2 L Al1.11
u? v ud v u v3 u v? ud u? v ( )
. 1 <2 . 1 2 2 12
Gyp = Ricgy — §Rg¢,¢ = sin” 6 - Ricgg — §R7" sin” 0 = sin” 6 - Gy
2
. 9 TV oUp Uy oUt Uy QU 1 U, 1 v,
=sin“f| -——-r"——+r"——= —r'—— —r—+r——
(u2 v u? v u v u v? u? u? v)
(A.1.12)
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A.2 Calculations in Inverse Mean Curvature Vector Flow Coordinates

A.2.1 Determinant of the Spacetime Metric and its Inverse in Inverse Mean Cur-
vature Vector Flow Coordinates

Given a matrix A, its (4, j)th cofactor is Cy; := (—=1)" M;;, where M;; is determinant

of the matrix obtained by deleting the ith row and the jth column of A. The adjoint
matrix adj(A) is defined as adj(A);; := Cj; = (=1)7T"Mj;. If A is invertible, then

Al = detl(A)adj(A).

Let A be the matrix representation of the spacetime metric g as in (4.2.1).
adj(A)y; = Oy = My = u?(ab — c?)
adj(A)p = Oy = —Myy = —d(ab — ¢*)
adj(A)13 = C31 = M3z = u(cf — be)

adj(A)y = Cy = —Myy = u*(ce — af)

(

(

(

(
adj(A)gg = Cog = My = —v*(ab — ¢*) + f(ce — af) + e(cf — be) (A.2.5)
adj(A)gs = Csp = —Msy = —d(cf — be) (
adj(A)as = Cpp = My = —d(ce — af) (
adj(A)ss = Css = Maz = —u*v?b — u?f2 — bd? (
adj(A)zy = Cu3 = —My3 = u’v’c + u’ef + cd® (

adj(A)44 = 044 = M44 = —U2U2CL - U2€2 - ad2 (A210)

det(g) = A9 Co1 + A2Coy = —d My + u?May
= —d*(ab— ) + v*| —v*(ab— ) + f(ce — af) + e(cf — be)]

= (—u*v® — d*)(ab — ®) + eu®(cf — be) + fu*(ce — af) (A.2.11)

These prove Lemma 4.5.
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A.2.2  Computation of {n, m)

Lemma A.1.

__det(g) _ _de(g) _ _|g]
{n,n) u?(ab — c?)  uldet(gs)  u?|gs|’ (A.2.12)
where we set |gs| := det(gs).
Proof. We simply compute that
cf—be@ ce—af@ 0 —do cf—bed
(n,m) = < u25r 0259+ —2 ¢’ 6t+?§ ab— ¢ 00
ce—afi
ab — 2 0¢
_,0 0 —d,0 0 cf 0 0 ce—af , 0 0
Gt wa T w <at 0w e g
—d,0 0 >, 0 0
—<a at>+ <a a>+0+0
cf - | (ef —be)(ce —af), 0
ab—c2<(90 5t> ot ( c) <69 58 (ab — ) <(?9 6(;5
+ce—af<ié (ce —af)(cf be)<ii N ce —af 2<i i>
ab —c2 09’ ot (ab — ?)? o’ 00 ab — c2 09’ 0¢
—d? —d* >
— 2 _ _ - 4
= —v° + - +ab—02(2(cf bele + 2(ce —af)f) + " +u2

(4)

(ce —af)(cf —be)c cf —be\’ ce —af\’
2 b
- (ab — c?)? - ab—c) * - ab — 2
—d?
= —v® + " +ab_c2(206f—2b€2+2C€f—2af2)+
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where (A) is

. 2(ce—af)(cf—be)c N <cf—be)2a+ (ce—af)Qb

(ab — ¢?)? ab — ¢? ab — ¢?

2c%ef — 2bc*e? — 2ac® f? + 2abcef + ac® f* + ab’e® — 2abcef + bc*e?

e

+a’bf? — 2abcef>

= 2c%ef — 2abcef — bcte? — ac f* + ab’e® + aQbe)

e

- ﬁ (20e/(¢* = ab) = (af? + be?) + ab(be® + af?))

- i (et )+ e 0 )

1
= ab—cQ(an + be? — 2cef).

Plug (A) back into the above, we get:

—d? 1
(n,n) = —v* + " + S (2cef — 2be* + 2cef — 2af?)

2 2
+ab—02(af + be® — 2cef)
»
= —® + d + (206f—2b62+20€f—2af2+af2+b62_206f)
u? ab — 2
—utv? — & 1 2 2
= 2 +ab_c2(206f—be —af?)
_ 1 2,2 g2 2 2 _ 2 9
= b~ &) (( uv® —d*)(ab — ) + u (2cef — be* — af )) (A.2.13)
9
- ’ A2.14
u?|gs| ( )
by Equation (4.2.2). 0
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A.2.3 Laplacian along S,

Note that the laplacian of d on the surface (S;,, gs) is:

N

Agsd = divyy (Vygd)

2 (i) = 3 2 ()

1
= (8_69 ((ggﬁd,g + gg¢d,¢)r2 sin 9) d ((95 dg + g2°d 4)r*sin 9))

r2sin 6 5¢
1 .
" r2sind ((gg%d,@ + 95’0 + g%dﬂ + 9§ d so)r?sin + (92d g + g2°d g )r* cos 0

(gS¢d9 + gs d9¢ + gS d¢ + gs¢d7¢¢)r2 sin @ + 0)

= (9% d o + 295°d g0 + 957 d 40) (second order derivative in d)
+ (g%ydo + g2yd.s + 95 ds + 955d.s) + (9% de + g§°d s) cot 0 (A.2.15)
That is:

Agsd = (95 d99 + 29 d¢9 +g ¢d’¢¢) + (gg?g + gg&, + gge cot H)dﬁ

9 0
+ (95?9 + ggq; + gs¢ cot 0)d

1

= ((bdgo — 20 49 + ad 39) + (b = 2bcotd — . + beot B)d,
gs
+ (—cp +2ccot +ay — ccot Q)d’(ﬁ)

1

= Tl ((bd o0 — 2¢d g9 + ad g) + (bg —bcot 0 — c4)d g + (—cg + ccotf + a7¢)d7¢)
s

(A.2.16)

For the second to the last equality above, we have used the following computa-

tions:

lgs].o = (r*sin® ) g = r*2sin 6 cos 6§ = 2r* sin® f cot § = 2|gs| cot 6. (A.2.17)
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and

b b ) 1 b b
g%f’g = ( ) = olgs| 19510 = (by — 2bcot 9); g% - ( ) =Tl
¢

9sl)y g5  gs| lgsl) . lgs|’
(A.2.18)

Similar for the other derivatives of the inverse of gg.
A.3 First Variation of Area

Let X! be an embedded closed (compact without boundary) hypersurface in a

Riemannian manifold (M", g, V). Endow ¥ with the induced metric. We consider a

variation of X as follows:
F:Yx(=6,0) — M, 0>0, (A.3.1)

such that for all z € ¥, := F(3,t), and t € (=9, 9),

%F(m,t) = n(z, v (z,t), (A.3.2)

where 7 is a smooth function n € C*(X x (=6,0)), and v(z,t) is the unit outward
normal vector to ¥; at (z,t). Therefore the variational vector fields along each surface
PINRTH % = 1n; - ;. Let g; be the induced metric on Y;, and let V! be the associated
Levi-Civita connection. Let do; be the corresponding (n — 1)-volume form on %,
and A; the (n —1)-volume. Let V; be the n-volume enclosed by ¥;. We shall refer to
Ay as the area of 3;, and V; the volume, in analogy to the case where ¥, are surfaces
in a 3-dimensional manifold. Let II; and H; := try,II be the second fundamental
form and the mean curvature of ¥ with respect to v(x,t) respectively. We first

compute the variation of doy. Let {U;xq, 29, -+ , 2, 1} be alocal coordinate chart of

Y., then ¥; can be locally parametrized as {x1, 22, - ,Z,_1,t} with each fixed t. Let
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gt = (g1)ijdz"dz? be the local representation of the metric on 3y, 7,5 = 1,2, .-+ ,n—1.

0 0
adat = E\/det(gt)d:vl Adx?- o A da™
= 1;det(gt) - trace (gtligt) de' ndz® Ao Adx™ ! (A3.3)
2 y/det(ge) ot

1 0
=3 det(g;)trace (gtlggt) drt Ada? Ao A da™ !

where equation (A.3.3) follows from the identity

d d
— A) = A A=A A34
dtdet( ) = det( )trace< o > (A.3.4)

for any square matrix A with entries functions of t. Now

0 0,0 0 0 0 — 0
a9 = 5 G 5$J> Voo oo o Viaw
— 0 0 0 — 0 — )
= <v((76_t’ $>+ <%’V(f;j §> (V is torsion free)

0 G
= Voo, =) + (= V ew)

Jd 0

where the last identity follows from the fact that v is a normal to the surfaces.
Notice that Equation (A.3.5) implies that the first derivative of the metric (along

the variational vector fields) is given by the second fundamental form. Now plug

(A.3.5) into (A.3.3):

1
édat det(g;)trace [ g7 ' - 2n - 1L, (=— 0 0 —) Jdat Adz? Ao A da™t = Hindo,
ot ox'’ Oxd
(A.3.6)
Therefore
iA —J 2al = | Hy(x)n(z,t)do(z) (A.3.7)
att_ztatat_ztt mz, O \T). -0.
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A.4 Second Variation of Area

Now we compute the first variation of mean curvature H;, which gives rise to the
second derivative of area. Recall that H;, = g? (II;);; in local coordinates, i,j =
1,2,--- ,n—1. Thus

0

2 .. D
gHt = agtj (IIt)l] + gtjg(ﬂt)ij (A41)

Since 0 = Z(g9, ") = (£909: ' + 9(Z9, '), we have Zg, ' = —g, ' (§91)g, . Thus

the first term in the above becomes

5tgt T(1Ly)y = —gi¥ (a(gt)kz) 9 (IL)i; = —gi*2n(1,)may (IL,)y; = —2n||IL||?

(A.4.2)
We now compute the derivative of the second fundamental form.

0 0
E(Ht)w <v¢(x1 ) ax]>

o - 0
=(V2Vav, xj>+<vﬁy’v%ﬁ>

ozt

= VoV, >+<(v Vo -V.oVe -V

b ozt ot

: o >+<v1yv AN

(Iz’(t t&l‘]

¢ 0 0 _ — 0
_<V(IZV v, e J>+< (E’@)V’@>+<V%V’Vaﬁa>

zt

= 0 0 0 — _
<v$ (_VEW) ’ %> + 77<R(V7 %)V7 %> + 77<V%V7 V$V>
where we have used two lemmas, which will be proved below:

Lemma A.2. V . v is tangential, i.e. <V o v,v)=0.

ozt

Lemma A.3. vf;y = —Vy,n, where Vs, is the surface gradient on ¥;.
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Therefore

w 0. 2
gt]E(IIt)ij = _Aztn - 7791;]<R(Va %)7 %7 V> + 77||IL§||2

y o, 0
= —Ay,n —ng7{(R(v, %), pt vy 4+ n|[IL||* (ambient metric g trace)

= —Ay,n — nRicy(v,v) + 77||Ht||2.

where we used

Lemma A .4. g§j<77, (Vs,m), %> = Ag,7.

lal
ox?
and

Lemma A.5. g§j<VL_u,VLv> = ||1L])>.
dzt oxd

Combining above, we get

0 .
S H = —Ag,n —n (Ricy(v,v) + |[IL|[*) =: Ls,, (A.4.3)

where Ly, is called the stability operator of ¥;. The second variation of area is then

given by:

aﬁ—;At = f n(w, t)(Lsn) (@, t) doy(x) + Hy() (gw, t)) doy(x) + Hn(w,t)? doy(w).

(A.4.4)

Now we verity the above lemmas.

Proof of Lemma A.2. Since v is the unit outward normal vector field, we have
0 —
0= F(V, vy =2V_.uvv). (A.4.5)
xl cxt

Thus V . v is tangential. Similarly, V 2 v is also tangential. O]
ot

dx?
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Proof of Lemma A.3. Recall that the gradient of a smooth function 7 along the sur-

face Y, is defined as

Ve,n:=Vn—<(Vn, v, (A.4.6)

that is, the tangential component of the gradient with respect to the ambient metric.
For any point p € ¥, choose geodesic normal coordinates {U; ey, ey, - - , e,} around p
such that e, ey, -+, e,—1 span T, and e, = v. Since veiz/ is tangential, it suffices

to show that W:;u, e(p) ={(=Vs,n,ep), fori=1,2,--- 'n—1. Indeed:

<V%V, ei)(p) = —(v, V%ei>(p) = —(v, v@%Xp) (V is torsion free)

= ) (p) — 1. T ()

= ) (Ve s tangential)
= (3 esmes.e)e)

= <_v2t777 €1>(p)

Since p is arbitrary, V. v = —Vy,n, as desired. O
ot

Proof of Lemma A.4. First note that ¢/(V o (Vs,n), 2y = g§j<Vt(; (Vsn), 55)-

But

. : |
GOV s (V) =) = g (V(Vs,) = divy, (Vsn) = Anr, (ALT)

ozt

where V!(Vy,n) is the covariant derivative of the vector field Vy,n, hence is a (1, 1)-

tensor field. N

Proof of Lemma A.5. Define vector fields X (i) := V 2 v and Y (j) := V_z v. Using

n—1 n—1
0 0
local coordinates, we can also write X (i) = kzl X(@)k% and Y (j) = ; Y(j)l$.
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Then
15> = g7 91" ()i (1)t = g 91" <X (), a—ik> <Y () %>
= gijgle(i)“(gt)akY(j)ﬁ(gt)m
= 97 (90)asX (i)"Y (5)°
= g/ {(X (@)Y (j))

=g’V o,V ov)

oxJ

as desired. O

A.5 Transformation Formulae of Ricei and Scalar Metric under Con-
formal Change of Metrics

Given Riemannian manifold (M™, g), recall that the Riemann curvature operator R

acts on vector fields X,Y, Z € T'(T'M) as follows:
R(X,Y)Z = DxDyZ — DyDxZ — Dixy\Z. (A5.1)

We can thus define a (1,3) tensor field R = R dr! @ do’ @ da? @ 5%, such that

lij

( 0o 0 ) o .. 0
ozt 0z’ oxt W ok
One can verify that
R = oy _ L Tk pm_pk m A5.2
lij_ﬁ_ﬁ—i_imﬂ_jm il - (A.5.2)

Using the metric g, we can define a new (0,4) tensor field Rm := Rklijda:k@dxl@

dz' ® da’ with components Ry 1= grm Rjj;. One verifies that
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Rm is called the Riemannian curvature tensor with respect to the metric g. The

Ricci curvature in the direction X € T),M is given by

0

. 0
. il
Ric(X, X) := ¢"(R(X, %)@a

X). (A.5.3)

Therefore the Ricci curvature tensor is given by the (2,4)-contraction of the Riemann
curvature tensor, i.e.,

_ Jklpsrs K _ l
30 5ok Bat 0’ = 9 PNk = 97 Rk = =R

il

Ricy = Rie(~, - ) = g(R(-, -2 2 ¢
oxt’ O0xJ

_ NG ok,

 oxk o + T'EzFﬁj - F?lrék'

(A.5.4)

The scalar curvature is

R := g"'Ricy;. (A.5.5)
Proposition A.6. Let (M™, g) be a Riemannian manifold of dimensionn, and p > 0
is a smooth function on M. Consider the new metric § := pg, i.e., g is a conformal

change of g. Then the corresponding Ricci curvatures changes in the following way:

n—2 —

Ez’j = Rz’j —

n 1 n—2
(log p).i; + (log p) i(log p),j—ggzj Aglogp + TIV log ﬂIZ] :

(A.5.6)

Proof. We will verity equation (A.5.6) at the center p € M of a geodesic normal

coordinate neighborhood. Then at p, we have g;; = d;; and Ffj = 0, and therefore

Gijk = 6k<62, a]> = <anm, 8]> + <8l, F%@,& =0 at D.

(A.5.7)
By (A.5.4), the Ricci curvature of § is given by:
Ry = ff}k - ff]fkg + ffjf];k - ffkf];] (A.5.8)
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Thus at p, we have:

~ 1 1 1 1
R = (Ffjk + 557:1«(108; p).jk + §5jk(10g p) ik — égij,kgkl (logp); — §gijg,kklaog p).i

1

1. 1 1
— 596" (log p),m) — (ka,j + 5010z p) ks + 50kk(108 p) i — 50ix59" (log p)s

1

1
- 592'1@9?(10% p)i— §gikgkl(10g p),ij)

1. 1 1
+ (Ffj + 5(55‘5(10&% p)j+ 55]'5(10% p)i— §9ij98l(log P),l) X

1. 1 1
(Fﬁk + §(>sk(10g p)k+ §5kk(10g p)s — §gsk9’“(log P),z)

1. 1 1
- (F et Qms(h)g p)k + Eéks(log p)i— §g¢kgs’(10g p),z) X

1. 1 1
(Flzj + 5().%(10%' p)j+ §5jk(10g p)s— §gsj9kl (log P),l)

2—n
2

1
(log p) ij — =gi;(1og p) k. + (product terms), (A.5.9)

= Ry +
/ 2
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where the red terms cancel, green terms cancel and the blue terms vanish at p.
1 1
(product terms) = Zéjsékk(log p).i(logp) s — Zékséjk(log p).i(log p) s

sl kl

1 1 .
+ 59:95+9™ 9" (log p) 1108 p) 1 = 79k 0559 'g* (log p) 1(log p) 4

1 ‘ n o
- i.ﬁjk.gkl(log p),z (10?; P)yi - Zgijg J (log p),s(log P),z

, 1
+ 99" (log p) 1 (1og p) : + =~ gi;9° (log p) < (log p) 4

4
n—1 1—n 1
= )i g T ——Gij 1 1T 79i501k01k B/ 1
1 (ogp)illog p) g + — —gij(log p).(log p)s + 7 9i0udu(log p).(log p)
1
— 70051 (log p) 1 (log p)
n—1

n—1 1
=~ (log p) ;(log p) ; — — i (log p) i(log p) s + 190 (log p) x(log p) &

1
~1 (log p).i(log p)

n—2 2—n

=~ (log p) i(logp) ; + 1

gi;(log p) 1(log p) 1 (A.5.10)

Where the red terms cancel. Therefore

Rij = Ri; + 2 % (1og p).iy — %gij(log P) i + — & (log p),i(log p),;
+ 2angzj(log p)a(log p)
= R — nT_Q(log P)aj + — 2(10g p).i(logp); — % (Ag((log p)) + nT_QIV(log p)lﬁ)
(A5.11)
O

Corollary A.7. Continue from Proposition (A.6), then the scalar curvature of § is
given by:
1 n—1 (n—1)(n—6)

R=-R——=A,p—
p 2 o 4p°

Vpl?. (A.5.12)

116



Proof. We again compute at p, which is the center of a geodesic normal coordinate

neighborhood. The result then follows from a simple calculation:

~ o~ 1 ..
R:=9g"Ri; = —g" (Rij -

n—2 n—2
(log p) i +

P (log p).i(log p)

- % (Ag(log p) + HTJIV(IOg p)l?,))

1 n—2 n—2 .. n n—2

= -R— A (1 i (log p) (1 —— A0 — 2 |Vlog p|?
p 5, Dollogp) + PR (log p).i(log p) 2 g(logp) + ——|V ogp|g]
1 n—2 n n—2 n(n —2)

=-R- — A0 ~ 2 |Viog p|2 — —— |V log p|2
p <2p +2p> g(log p) + 4p| og pl; ™ |V log pl;
1 2(n—1) —n?+3n—2

= -R-2"AQ T 2V log pf?
p % g(logp) + ” |V log pl;

1 n—1/1 —n?>+3n—-2/1
= —R— —pi| +———F——— | PP
p po\p /), 4p p

1 n—1 1 1 —n?+ 3n — 2
= -R— <——2f0,iﬂ,i + ;Pu) + |Vl

p P 4p?
1 n—1 dn—4—n*+3n—-2 _ ,
= ;R - TAgP 1 Volg
1 n—1 (n—1)(n—6) 9
= ;R - TAQIO - 4p3 |Vp|gv
as desired. O]

We want to eliminate the gradient term, and for that purpose we need to distin-

guish the following two cases.

Corollary A.8. Suppose the manifold is of dimension n = 2. Let p := e*, where
u > 0 is a smooth function on M, then
R=e¢2(R-2Au). (A5.13)
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Proof. We plug p = €** into equation (A.5.12), and again, we will be computing at

p € M in a geodesic normal coordinate neighborhood:
R=p""R—p*Agp+p~®|Vp|?
= e R — e (e¥2uy) ;t e~ 0 (e®2u ;)?

- - 2 —6u g 4
—e R _ M ((f “2u2u,; + 62u2u7”‘) + e %4e “u

=e (R —2A4u),
where the red terms cancel. O

Corollary A.9. Now suppose manifold is of dimension n = 3, we set p := uﬁ, for

u a positive function on M. Then equation (A.5.12) becomes:

~ nt2 4(n—1
R=u"3 (Ru — (n2)Agu> . (A.5.14)

n —

Proof. The result follows from plugging p = w2 into equation (A.5.12), again we

will be computing at p:
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R=u"m2R—(n—1)u »2A,(un2)— 1 u W|V(un—2)|§
. —Dn—6) 1 [ 4 \°
= U n72R—(n—1)u 71552(”_2“?12”’1>Z_(n )4(” )u n—2 (n_z)
2(6—n)
U U
4 6 - —2n —_n
—u IR — (n — 1)u7%n 5 (n _ZUS"*Q? Uil + UELQUM)
_ (n — 1{4(71 — 6) ( 4 2>2u_12:i22_2nu7iu7i
n_
=u "2R—(n—1)— w gU
4 6=n 22w (n—=1)n—-6)[ 4 \° o
2
— [Vl ((n— 1)—2n_ u 2+ 1 ) u
a4 4(n—1) _ne2 4n—1)(n—6) (n—1)(n—6)4
=y n2R— 2 Ay — |Vul?
R g vl (S in—2p
_2n
U n—2
4 A4n—1) _ne2
= Uu n—2 — u 2 u
(n—2) ?
n 4 - 1
—y (Ru — (n—z)Agu) : (A.5.15)
n_
which is desired. O]
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