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Abstract

The central object of study of this thesis is inverse mean curvature vector flow of

two-dimensional surfaces in four-dimensional spacetimes. Being a system of forward-

backward parabolic PDEs, inverse mean curvature vector flow equation lacks a gen-

eral existence theory. Our main contribution is proving that there exist infinitely

many spacetimes, not necessarily spherically symmetric or static, that admit smooth

global solutions to inverse mean curvature vector flow. Prior to our work, such solu-

tions were only known in spherically symmetric and static spacetimes. The technique

used in this thesis might be important to prove the Spacetime Penrose Conjecture,

which remains open today.

Given a spacetime pN4, gq and a spacelike hypersurface M . For any closed surface

Σ embedded in M satisfying some natural conditions, one can “steer” the spacetime

metric g such that the mean curvature vector field of Σ becomes tangential to M

while keeping the induced metric on M . This can be used to construct more examples

of smooth solutions to inverse mean curvature vector flow from smooth solutions to

inverse mean curvature flow in a spacelike hypersurface.
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1

Introduction

1.1 Motivation: Mass in General Relativity

General relativity is the study of large scale structures of the universe. One funda-

mental object in general relativity is the notion of mass. Pointwise energy density

and total mass of a spacetime are both well-defined in general relativity. However,

the local mass of a given region in a spacetime (called quasi-local mass), as well as

the relationship between local mass and pointwise energy density and total mass of

the spacetime are still not very well understood.

Despite of many attempts in defining the quasi-local mass (e.g. [2, 3, 5, 15, 16,

24, 47]), none of the proposed functionals satisfy all the desired properties. One

such natural property is that the total mass of the spacetime should be bounded

from below by the mass of a region in it, assuming some positivity condition on the

pointwise energy density (e.g. dominant energy condition).

Given a spacetime pN4, gq and a complete asymptotically flat spacelike hypersur-

face M3 (also called a slice) with the induced Riemannian metric g. Let k be the

second fundamental form of M . The triple pM3, g, kq is called a Cauchy data of this
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hypersurface (see Figure 1.1 below).

Figure 1.1: Slice in a spacetime with Cauchy data.

There is a well-defined quantity called the ADM mass (defined by R. Arnowitt,

S. Deser and C. Misner in [1]) that measures the total mass of this hypersurface.

Suppose M has a compact outermost minimizing surface Σ. Physically, Σ can be

viewed as the apparent horizon of blackholes.

In the case that M is totally geodesic, i.e. k � 0, then the pointwise energy density

equals the scalar curvature of M . In this case, the Riemannian Penrose Inequality

states that:

Theorem 1.1 (Riemannian Penrose Inequality). Let M and Σ be given as above. If

the scalar curvature of pM, gq is non-negative, then its ADM mass is greater than or

equal to
a|Σ|{16π, where |Σ| is the total area of Σ (see Figure 1.2).

Penrose [37] first conjectured this inequality in 1973, and he gave a heuristic proof

based on physical considerations, explained as follows. It turns out that the lower

bound
a|Σ|{16π in the Riemannian Penrose Inequality equals the Hawking mass,

which is a quasi-local mass functional proposed by Hawking [24], of the minimal

surface Σ. This can be viewed as the mass of the blackholes inside Σ. Thus, the

Riemannian Penrose Inequality states that the total mass of M should be at least the

mass contributed by the blackholes, assuming that the energy density (which equals

2



Figure 1.2: Totally geodesic spacelike hypersurface with compact outermost mini-
mal surface Σ.

the scalar curvature in the case of a totally geodesic hypersurface) is non-negative

everywhere.

Geroch [22], Jang and Wald [26] first discovered a monotone property of Hawking

mass of surfaces under smooth inverse mean curvature flow. Based on this, Huisken

and Ilmanen [25] gave a proof of this inequality in the case of a single blackhole (i.e.

Σ is connected). In the same year, Bray [5] proved the full Riemannian Penrose

Inequality using a different technique.

In the case of no blackholes, the Riemannian Penrose Inequality is also known as

the Riemannian Positive Mass Theorem:

Theorem 1.2 (Riemannian Positive Mass Theorem). Given a complete asymptot-

ically flat Riemannian manifold pM3, gq with non-negative scalar curvature. The

ADM mass of M is non-negative.

In 1979, Schoen and Yau [42] proved this result using a variational method. In

the same year, they [41] generalized this result to Riemannian manifolds of dimen-

sion less than eight. In 1981, they [43] removed the assumption that M is totally

geodesic and proved the Riemannian Positive Mass Theorem for an arbitrary space-

like hypersurface in a spacetime that satisfies the dominant energy condition.
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1.2 Inverse Mean Curvature Vector Flow

So far all the discussions assume that our spacetime has a hypersurface with zero

second fundamental form, in which case inverse mean curvature flow naturally bridges

the Hawking mass of an apparent horizon of blackholes and the ADM mass of the

hypersurface. However, a spacetime in general does not admit such a totally geodesic

hypersurface. This is because that the second fundamental form of a hypersurface

in a spacetime has six components, but the hypersurface only has one degree of

freedom. Thus it is not generic to have all six components vanish. Therefore it is

desirable to obtain a similar bound on the total mass of the spacetime by the mass of

the blackholes without this assumption. This leads to the general Spacetime Penrose

Conjecture, which is still open today.

A viable candidate for proving this conjecture is the codimension-two analogue

of inverse mean curvature flow, called the inverse mean curvature vector flow. How-

ever, there are two major problems with this flow. First, unlike the inverse mean

curvature flow, which is a forward parabolic PDE, inverse mean curvature vector

flow is a system of forward-backward parabolic PDEs: forward parabolic in space-

like directions, and backward parabolic in timelike directions (see [25]). Backward

parabolic equations lack a general existence theory. For instance, the reverse heat

flow is backward-parabolic. Given many initial conditions, the reverse heat flow

would develop singularities instantaneously. However, the reverse heat flow would

exist for time t ¡ 0 if we first perform the heat flow for time t and then start flowing

backwards.

Second, for some initial surfaces, even the inverse mean curvature vector flow

exist, their Hawking mass still won’t give us a lower bound on the total mass of the

spacetime as in the inverse mean curvature flow case simply because the former is

too large. To illustrate this, take a t � constant slice in the Minkowski spacetime.
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The round sphere in that slice has zero Hawking mass. Spacial perturbations will

decrease the Hawking mass making it negative, whereas timelike perturbations will

increase the Hawking mass making it positive. During inverse mean curvature vector

flow, the spacial “wiggles” will smooth out due to the parabolic nature of the flow.

However, timelike “wiggles” will get amplified since the flow is reverse parabolic in

the timelike directions. With these surfaces with positive Hawking mass, inverse

mean curvature vector flow will not provide a lower bound for the ADM mass of

Minkowski space, which is zero.

However, these two problems seem to solve each other because they are both

suggesting that solutions to inverse mean curvature vector flow exist only when the

“right” initial surface is given. The important question is then: Given a space-

time. Do such “right” initial surfaces always exist? The answer is affirmative if the

spacetime is spherically symmetric or static.

Inverse mean curvature vector flow of surfaces in spherically symmetric space-

times was first studied by E. Malec, and N. ÓMurchadha [31]. They showed that

inverse mean curvature vector flow of spherically symmetric spheres exist for all time.

Intuitively, the spherical symmetries prevent timelike “wiggles” to occur. Moreover,

the Hawking mass is monotonically non-decreasing under inverse mean curvature

vector flow of spacelike surfaces with spacelike mean curvature vectors, assuming the

spacetime satisfies the dominant energy condition.

Later Frauendiener [21] showed that, in an arbitrary spacetime that satisfies the

dominant energy condition, if smooth inverse mean curvature vector flow exists, then

the Hawking mass is monotonically non-decreasing. In 2004, H. Bray, S. Hayward,

M. Mars and W. Simom [8] showed that we can in fact flow along a one-parameter

family of directions and the Hawking mass is still monotone.

In spherically symmetric spacetimes, the “right” initial surfaces for inverse mean

curvature vector flow are spherically symmetric spheres. What about spacetimes
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that are not necessarily spherically symmetric?

Bray and Ye Li were trying to develop a general existence theory for inverse mean

curvature vector flow back in 2009, and one of their intuitions was that if one can

somehow control the flow of the surfaces so that they stays tangential to a spacelike

slice, then the flow might not develop singularities. In fact it has been shown that:

Proposition 1.3 ([8]). The family of closed embedded spacelike surfaces tΣsu is a

solution to the smooth inverse mean curvature vector flow with spacelike inverse mean

curvature vector ~IΣs everywhere on the surfaces if and only if there exists a spacelike

hypersurface M3 � N , such that the mean curvature vector ~HΣs is tangential to M

at all px, sq, and tΣsu is a solution to the smooth inverse mean curvature flow in M .

Following the intuition, we prove the main theorem in Chapter 4:

Theorem 1.4 (Main Theorem). There exist infinitely many non-spherically sym-

metric, non-static spacetimes that admit inverse mean curvature vector flow coordi-

nate charts. Given such a spacetime U with an inverse mean curvature vector flow

coordinate chart pt, r, θ, φq and the constructed spacetime metric g. The coordinate

spheres St,r contained in each t � constant slice, when reparameterized by r2 � es,

are smooth global solutions to the inverse mean curvature vector flow equation.

This theorem is restated and proved in Theorem 4.4. The proof is based on

explicit constructions of spacetime metrics that admit inverse mean curvature vector

flow coordinate charts, defined in Chapter 4. Theorem 1.4 seems to suggest that

spacetimes that admit smooth solutions to inverse mean curvature vector flow exist

generically. However, this general problem of find solutions to inverse mean curvature

vector flow (i.e. the “right” initial surface) in arbitrary spacetimes is still open.

There also exists a coordinate-free analogue of Theorem 1.4:
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Theorem 1.5. Given a spacetime pN4, gq, a spacelike hypersurface M3 and a closed

embedded surface pΣ2, gΣq � M . Suppose Σ is area expanding (defined in (4.3.5)),

then there exists a unique smooth steering parameter Q � QΣ P C8pNq, such that

in the steered spacetime metric gQ (defined in (4.3.1)), ~HΣ is tangential to M every-

where on Σ.

This can be used to generate more examples of solutions to inverse mean curvature

vector flow. Consider a smooth solution to inverse mean curvature flow in a spacelike

hypersurface M . One can then smoothly adjust the spacetime metric along the flow

such that the mean curvature vector of each flow surface becomes tangential to M .

These steered surfaces are then solutions to inverse mean curvature vector flow, since

the area expanding condition is already satisfied, and now the mean curvature vectors

are tangential to a spacelike hypersurface (see Proposition 1.3).

1.3 Uniformly Area Expanding Straight Out Flows and Time Flat
Surfaces

Inverse mean curvature vector flow is a type of flow that has bad existence theory,

but very good properties: the Hawking mass is monotone under smooth inverse mean

curvature vector flow. There is another flow studied in Chapter 5, called uniformly

area expanding straight out flow (or simply straight out flow), that has solutions with

a wide class of initial surfaces. In that chapter, we try to construct spacetimes that

admit a coordinate chart in which straight out flow of coordinate spheres exists for

all time. Partial results have been obtained while complete understanding of this

problem is still work in progress:

Proposition 1.6. Suppose a spacetime pN4, gq admits a coordinate chart tt, r, θ, φu

7



such that the coordinate representation of g is

g �

���������

t r θ φ

t �v2 d e f

r d u2 0 0

θ e 0 a c

φ f 0 c b

��������

(1.3.1)

with ab � c2 � r4 sin2 θ. Then er :� 1
u
B
Br

is straight out if and only if d satisfies a

second order elliptic PDE in d: ∆gSd � Gpd, d1q � 0, where G is given by (5.2.30)

and (5.2.31).

We conjecture that solutions to the above elliptic PDE always exist.

In addition to general existence, another reason for studying the straight out flow

is that the Hawking mass is also monotonically non-decreasing under such flow (e.g.

see [9], [10]) if the spacetime also satisfies the dominant energy condition.

The general existence of straight out flows can serve as a disadvantage since

we can even flow surfaces with positive Hawking mass, too large to be used as a

lower bound of the total mass of some spacetimes, in straight out directions. To

see this, again consider the Minkowski spacetime. All surfaces that are contained in

a spacelike plane have non-positive Hawking mass. Thus, non-planer surfaces have

positive Hawking mass. For such surfaces, inverse mean curvature vector flow would

not work since there are time “wiggles”. However, those surfaces can still flow in

straight out directions. Since the total mass of Minkowski space is zero, having a

surface with positive Hawking mass is not going to give us a lower bound for the

total mass since the Hawking mass is monotone.

Inverse mean curvature vector flow and uniformly area expanding straight out

flow are two special cases of uniformly area expanding flows : orthogonal flows such

that the rate of change of the area form of each flow surface equals the area form

8



itself. The Hawking mass is not necessarily monotone under general uniformly area

expanding flows. H. Bray, J. Jauregui and M. Mars very recently ([9], [10]) obtained

a variational formula of the Hawking mass under general uniformly area expanding

flows, which consists of four major terms (see [10]). The first three terms are non-

negative if the spacetime satisfies the dominant energy condition. The fourth term

is an integral term with integrant a function of the spacetime multiplied by the

divergence of the connection one-form associated with their mean curvature vector

of the flow surfaces. Thus, if the connection one-form is divergence free, then the

fourth term vanishes and the Hawking mass is monotone. Surfaces with divergence

free connection one-form associated with the mean curvature vectors are called time-

flat (defined in [9], [10]). While the conditions on inverse mean curvature vector flow

coordinate chart can be viewed as a global “flatness” condition on the surface, the

time-flat condition is a local “flatness” condition.

The organization of this thesis is given as follows. In Chapter 2, we study the

monotonicity of Hawking mass under smooth inverse mean curvature flow. In Chap-

ter 3, we study inverse mean curvature vector flow in spherically symmetric space-

times. The notations used in this thesis are also introduced in that chapter. In

Chapter 4, we prove the main theorems 1.4 and 1.5. In Chapter 5, we study uni-

formly area expanding straight out flows, and prove Proposition 1.6. Finally in

Chapter 6, some open problems and future works are discussed.

9



2

Huisken-Ilmanen Inverse Mean Curvature Flow and
Monotonicity of Hawking Mass

In this chapter we study inverse mean curvature flow of a closed embedded surface

Σ2 in an asymptotically flat Riemannian manifold pM3, gq. The motivation is the

Riemannian Penrose Inequality:

Theorem 2.1 (Riemannian Penrose Inequality). Let pM3, gq be a complete, asymp-

totically flat Riemannian manifold with non-negative scalar curvature and a compact

outermost minimal surface Σ of total area |Σ|, then

mADM ¥
c

|Σ|
16π

(2.0.1)

with equality if and only if pM3, gq is isometric to the Schwarzschild metric with mass

m ¡ 0: �
R3zt0u,

�
1 � m

2|x|

4

δij

�
(2.0.2)

outside their respective outermost minimal surfaces.

10



Σ here can be viewed at the apparent horizon of blackholes. The lower bound for

the ADM mass,
b

|Σ|
16π

has the physical interpretation as the mass of the blackholes.

Penrose [37] first conjectured the Riemannian Penrose Inequality in 1973, and he

gave a heuristic proof based on the physical considerations. In 2001, Huisken and

Ilmanen [25] proved this inequality using inverse mean curvature flow in the case of a

single blackhole. In the same year, H. Bray [5] proved this inequality using conformal

flow of metrics that works for any number of blackholes. In 2009, H. Bray and D.

Lee [13] generalized the inequality to all dimensions less than eight. In 2010, Lam

[28] proved the Riemannian Penrose Inequality for graphs in all dimensions. In 2011,

Schwartz [45] proved a volumetric version of the Penrose inequality for conformally

flat manifolds. The general Spacetime Penrose Conjecture is still open today (see

[33, 11, 12, 33] for more discussions of this conjecture).

In Section 2.1, we define asymptotically flat manifolds, ADM mass and Hawking

mass of closed surfaces. In Section 2.2, we study the Geroch, Jang-Wald monotonicity

formula of Hawking mass under smooth inverse mean curvature flow. In Section 2.3,

we briefly discuss Huisken and Ilmanen’s proof of the Riemannian Penrose Inequality

using such flows.

2.1 Asymptotically Flat Manifolds, ADM Mass and Hawking Mass

Definition 2.1.1. An n-dimensional Riemannian manifold pMn, gq is called asymp-

totically flat if it satisfies the following two conditions:

(1) There exists a compact set K �M and a diffeomorphism

Φ : E :�MzK ÝÑ RnzB̄1,

where B1 is the unit open ball in Rn; and

11



(2) In the coordinate chart px1, x2, � � � , xnq on E induced by the above diffeomor-

phism Φ, called an asymptotically flat coordinate chart, the metric components

gij and the scalar curvature R satisfy the following decay conditions at any

point x P E, i, j, k, l � 1, 2, � � � , n:

(1) gijpxq � δijpxq �Op|x|�pq;

(2) |x||gij,kpxq| � |x|2|gij,klpxq| � Op|x|�pq;

(3) |Rpxq| � Op|x|�qq,

with some constants p ¡ n�2
2

and q ¡ n. Here gij,k and gij,kl are coordinate

derivatives.

E is called an asymptotically flat end of M . An asymptotically flat manifold can

have multiple asymptotically flat ends.

Definition 2.1.2. Given an asymptotically flat Riemannian manifold pMn, gq and

asymptotically flat coordinate chart. The ADM mass of of M is:

mADMpM, gq :� lim
rÑ8

1

2pn� 1qωn�1

»
Sr

ņ

i,j�1

pgij,i � gii,jqνjdSr (2.1.1)

where ωn�1 is the volume of the pn�1q-dimensional round sphere; Sr is the coordinate

sphere of radius r; ν is the outward unit normal along Sr; and dSr is the volume form

of Sr.

The ADM mass of an asymptotically flat manifold was defined by Richard Arnowitt,

Stanley Deser and Charles W. Misner [1]. They proved that the above definition is

independent of the choice of asymptotically flat coordinate charts. Thus, the notion

of the ADM mass is well-defined. We sometimes simply write mADMpgq instead of

mADMpM, gq if the underlying manifold is clear.
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In dimension 3, we have

mADMpM3, gq � lim
rÑ8

1

16π

»
Sr

3̧

i,j�1

pgij,i � gii,jqνjdSr. (2.1.2)

Definition 2.1.3. Given a Riemannian manifold pM3, gq and a closed embedded

surface pΣ2, gΣq with the induced metric. The Hawking mass of Σ is defined to be:

mHpΣq :�
c

|Σ|
16π

�
1 � 1

16π

»
Σ

|HΣ|2 dAΣ



, (2.1.3)

where HΣ is the scalar mean curvature of Σ in M .

Example 2.1.1 (Euclidean Space). Rn with the standard Euclidean metric is an

asymptotically flat manifold with zero ADM mass.

Example 2.1.2 (Conformal Transformation of Metric). Given an asymptotically flat

manifold pMn, gq. Consider a conformal transformation g � u
4

n�2 g of the metric g,

with u P C8pMq, u ¡ 0. By Equation (A.5.14) the scalar curvatures R and R of g

and g respectively, are related by:

R � u�
n�2
n�2

�
Ru� 4pn� 1q

n� 2
∆gu



. (2.1.4)

If u and its coordinate derivatives satisfy the following decay conditions, i, j, k �
1, 2, � � � , n:

(1) u tends to 1 at 8;

(2) u,i � Op|x|�p�1q;

(3) u,jk � Op|x|�p�2q;

(4) ∆gu � Op|x|�qq
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in an asymptotically flat coordinate chart of pMn, gq for some constants p ¡ n�2
2

and

q ¡ n, then pMn, gq is also asymptotically flat in that coordinate chart. Moreover,

mADMpgq � mADMpgq � lim
rÑ8

2

pn� 2qωn�1

»
Sr

Bu
Bν dSr, (2.1.5)

where Bu
Bν

is the outward normal derivative of u along Sr.

Example 2.1.3 (Schwarzschild Manifold). Combining Example 2.1.1 and 2.1.2, con-

sider the following one-parameter family of conformal transformations of pRnzt0u, δijq,
parameterized by a constant m ¡ 0:

�
Rnzt0u,

�
1 � m

2|x|n�2


 4
n�2

δij

�
. (2.1.6)

This is called the Schwarzschild manifold of dimension n and mass m. It is easy to

verify that u � 1 � m
2|x|n�2 satisfies the desired decay condition to make the resulting

metric asymptotically flat. m is called the mass because the ADM mass of this metric

is exactly m. This can be seen quite easily for the three-dimensional Schwarzschild

manifold:

�
R3zt0u,

�
1 � m

2|x|

	4

δij



. By Equation (2.1.5):

mADM

��
1 � m

2|x|

4

δij

�
� mADMpδq � lim

rÑ8

1

2π

»
Sr

B
Br
�

1 � m

2r

	
dSr

� � lim
rÑ8

1

2π

»
Sr

�m
2
r�2 dSr

� lim
rÑ8

1

2π

m

2
r�24πr2

� m (2.1.7)

We now study further the geometry of the three-dimensional Schwarzschild man-

ifold. Let r :� |x|. First, note that the Schwarzschild metric is symmetric under the
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mapping r ÞÑ m2

4r
. Thus the Schwarzschild manifold has two ends, with the center of

symmetry being m
2r
� 2r

m
, that is r � m

2
, which is a two-sphere. Recall that if g � u4δ

for some positive function u, then the mean curvature of a sphere of radius r with

respect to g is given by:

H � 1

u2

�
2

r
� 4

u

du

dr



. (2.1.8)

Therefore at r � m
2

, the mean curvature is zero. Hence, the sphere r � m
2

is a mini-

mal surface, which can be viewed as the apparent horizon of a blackhole. The region

outside of the blackhole is called the exterior region of the Schwarzschild manifold:

�
R3zBm

2
,
�

1 � m

r

	4

δ



.

The exterior region is an asymptotically flat end (see Figure 2.1)

Figure 2.1: Exterior region of three-dimension Schwarzschild manifold with bound-
ary the minimal sphere Sm

2
. Figure courtesy of Mau-Kwong G. Lam.

There exists an isometric embedding of the three-dimensional Schwarzschild man-

ifold into R4 such that

r � w2

8m
� 2m.

The image of this embedding is a parabola (see Figure 2.2), and the minimal sphere

Sm
2

gets mapped to the sphere S2m � R4:
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Figure 2.2: Isometric embedding of three-dimensional Schwarzschild manifold into
R4.

The area of Sm
2

is then given by the Euclidean area of S2m: |Sm
2
| � 4πp2mq2 �

16πm2. Therefore

mHpSm
2
q �

d
|Sm

2
|

16π

�
1 �

»
Sm

2
�
�
�>

0
H2
Sm

2

dASm
2

�
� m. (2.1.9)

Combing this with the ADM mass (2.1.7), we see that

Proposition 2.2. The ADM mass of the three-dimensional Schwarzschild manifold�
R3zt0u,

�
1 � m

2|x|

	4

δij



equals the Hawking mass of the minimal sphere Sm

2
, which

is exactly m.

More generally, Huisken and Ilmanen [25] proved (see also [40]):

Theorem 2.3. Given an asymptotically flat Riemannian manifold pMn, gq and an

asymptotically flat coordinate chart. Then

lim
rÑ8

mHpSrq � mADMpMq, (2.1.10)

where Sr is the coordinate sphere of radius r.
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2.2 Geroch, Jang-Wald’s Approach and Their Monotonicity Formula

Huisken and Ilmanen’s proof of the Riemannian Penrose Inequality is based on the

monotonicity property of the Hawking mass under smooth inverse mean curvature

flow, first discovered by Geroch and Jang-Wald.

Definition 2.2.1 (Inverse Mean Curvature Flow). Given a Riemannian manifold

pM3, gq and a closed embedded surface Σ2 in M . A smooth inverse mean curvature

flow of Σ in M is a smooth family of surfaces F : Σ � r0, T s ÝÑ M of Σ such that

the following parabolic evolution equation is satisfied:

BF
Bt � νt

Ht

, t P r0, T s, (2.2.1)

where νt and Ht is the unit outward normal vector field and scalar mean curvature

of Σt :� F pΣ, tq, respectively.

A family of closed embedded surfaces tΣtu in M is called a smooth solution to

inverse mean curvature flow if they satisfy (2.2.1). Given such a family of surfaces

tΣtu. The first variation of area formula (A.3.7) implies that

d

dt
|Σt| �

»
Σt

Ht
1

Ht

dAΣ � |Σt|. (2.2.2)

Therefore the area of Σt grows exponentially under inverse mean curvature flow.

Example 2.2.1 (Inverse Mean Curvature Flow of Spheres). Consider a round sphere

Sr0 in R3 with radius r0 ¡ 0, and flow this sphere out by inverse mean curvature flow.

By (2.2.2), the flow surfaces are still round spheres, and the area grows exponentially.

Thus tSet{2r0u is a solution to this flow for all time.

Geroch [22], Jang and Wald [26] discovered the following nice connection between

solutions to inverse mean curvature flow and the Hawking mass:
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Theorem 2.4 (Geroch, Jang-Wald). Given pM3, gq with non-negative scalar curva-

ture. If a family of closed embedded surfaces tΣtu is a smooth solution to inverse

mean curvature flow in M , then for all t ¡ 0,

d

dt
mHpΣtq ¥ 0, (2.2.3)

i.e. the Hawking mass is monotonically non-decreasing.

Proof. Let Ht and dAt be the scalar mean curvature and the volume form of Σt in

M , respectively.

d

dt
mHpΣtq � d

dt

�c
|Σt|
16π

�
1 � 1

16π

»
Σt

H2
t dAt


�

� d

dt

�c
|Σt|
16π

��
1 � 1

16π

»
Σt

H2
t dAt



�
c
|Σt|
16π

�
� 1

16π

d

dt

»
Σt

H2
t dAt




� 1

2

� |Σt|
16π


�1{2
1

16π
|Σt|

�
1 � 1

16π

»
Σt

H2
t dAt



(By Equation (2.2.2))

�
c
|Σt|
16π

�
� 1

16π

»
Σt

�
2Ht

d

dt
pHtqdAt �H2

t

d

dt
pdAtq

�


� 1

2

c
|Σt|
16π

�
1 � 1

16π

»
Σt

H2
t dAt



�
c
|Σt|
16π

�
� 1

16π

»
Σt

�
2Ht

d

dt
pHtqdAt �H2

t dAt

�


�
c
|Σt|
16π

"
1

2

�
1 � 1

16π

»
Σt

H2
t dAt



� 1

16π

»
Σt

�
2Ht

d

dt
pHtq �H2

t

�
dAt

*
(2.2.4)

By the first variation of mean curvature formula (A.4.3):

d

dt
Ht � �∆Σt

�
1

Ht



� 1

Ht

RicMpν, νq � 1

Ht

||IIt||2, (2.2.5)

where RicM is the Ricci curvature of M . Plug (2.2.5) into (2.2.4) we get:
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d

dt
mHpΣtq �

c
|Σt|
16π

"
1

2
� 1

2

1

16π

»
Σt

H2
t dAt

� 1

16π

»
Σt

2Ht

�
�∆Σt

�
1

Ht



� 1

Ht

RicMpν, νq � 1

Ht

||IIt||2
�
�H2

t dAt

*

�
c
|Σt|
16π

"
1

2
� 1

16π

»
Σt

�
2Ht∆Σt

�
1

Ht



� 2RicMpν, νq � 2||IIt||2 � 3

2
H2
t

�
dAt

*
(2.2.6)

We now compute the first three integral terms in the above. By integration by

parts, we get:

»
Σt

2Ht∆Σt

�
1

Ht



dAt �

»
Σt

�2x∇ΣtH,∇Σt

1

Ht

ydAt �
»

Σt

2||∇ΣtHt||2
H2
t

dAt. (2.2.7)

Now by the Gauss equation (see e.g. [27]), we have

RicMpν, νq � 1

2
RM �KΣt � 1

2
H2
t �

1

2
||IIt||2, (2.2.8)

where KΣt is the Gauss curvature of Σt.

Next let λ1ptq and λ2ptq be the principal curvatures of Σt, then

Ht � λ1ptq � λ2ptq, ||IIt||2 � λ1ptq2 � λ2ptq2.

Therefore

||IIt||2 � 1

2
H2
t � λ1ptq2 � λ2ptq2 � rλ1ptq � λ2ptqs2

2
� rλ1ptq � λ2ptqs2

2
. (2.2.9)
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Plug them back into (2.2.6), we get:

d

dt
mHpΣtq �

c
|Σt|
16π

"
1

2
� 1

16π

»
Σt

�
2Ht∆Σt

�
1

Ht



� 2RicMpν, νq � 2||IIt||2 � 3

2
H2
t

�*

�
c
|Σt|
16π

"
1

2
� 1

16π

»
Σt

2||∇ΣtHt||2
H2
t

�RM � 2KΣt �H2
t � ||IIt||2 � 3

2
H2
t dAt

*

¥
c
|Σt|
16π

"
1

2
� 1

16π

»
Σt

�2KΣt � pλ1ptq � λ2ptqq2
2

dAt

*
(RM ¥ 0)

¥
c
|Σt|
16π

"
1

2
� 1

8π

»
Σt

KΣtdAt

*
¥ 0 (2.2.10)

where the last inequality follows from the Gauss-Bonnet formula:

»
Σt

KΣtdAt ¤ 2πχpΣtq � 2πp2 � 2 � genuspΣtqq ¤ 4π.

Using this, Geroch, Jang-Wald discovered a possible approach to prove the Rie-

mannian Penrose Inequality via the following steps:


 Let Σ be the outermost minimal surface in M . Its Hawking mass is
b

|Σ|
16π

since

its mean curvature is zero. Notice that this is the lower bound in the Riemannian

Penrose Inequality.


 Flow Σ out by inverse mean curvature flow, and assume that the flow is smooth

and exists for all time. Let tΣtu be the flow surfaces. Theorem 2.4 implies that the

Hawking mass is non-decreasing.


 Let Sr be the coordinate sphere of radius r in an asymptotically flat coordinate

chart of M . Theorem 2.3 implies that lim
rÑ8

mHpSrq � mADMpMq.

Here is the upshot: If smooth inverse mean curvature flow of Σ in M exists for all
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time, and the flow surfaces approach large coordinate spheres near infinity sufficiently

fast, then:

mADMpMq � lim
tÑ8

mHpΣtq ¥ mHpΣ0q � mHpΣq �
c

|Σ|
16π

, (2.2.11)

and this would prove the Riemannian Penrose Inequality. However, smooth solutions

to inverse mean curvature flow do not always exist. In fact, in the case that the flow

surface becomes minimal (i.e. mean curvature is zero), the flow is no longer defined

since the flow speed is the reciprocal of the mean curvature (see (2.2.1)). There are

other cases where singularities can occur:

Example 2.2.2 (Inverse Mean Curvature Flow of Disjoint Spheres). Suppose Σ

is a disjoint union of two spheres. Inverse mean curvature flow of Σ will develop

self-intersection in finite time.

Example 2.2.3 (Inverse Mean Curvature Flow of Thin Torus). Consider a thin

torus in R3, obtained as the boundary of an ε-neighborhood of a large round circle.

Thus its mean curvature is positive everywhere. Now starting flowing the torus by

inverse mean curvature flow (see Figure 2.3). By the first variation of the mean

curvature (A.4.3) and the parabolic maximum principle, the flow speed has a lower

bound. As a consequence the torus will fatten up and eventually the mean curvature

will become negative in the hole of the torus. Thus, the mean curvature must be zero

at some point. However, the flow is not defined when the mean curvature is zero.

2.3 Huisken-Ilmanen’s Approach and Level Set Formulation of In-
verse Mean Curvature Flow with Jumps

Because inverse mean curvature flow does not always have solutions, Huisken and Il-

manen defined a generalized inverse mean curvature flow which always has solutions.
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Figure 2.3: Inverse mean curvature flow of a thin torus which develops a singularity
in finite time. Picture courtesy of Andrew Goetz.

The basic idea is that, in this generalized flow, when a surface is enclosed by an-

other surface of less area, it jumps outward to its outermost minimal area enclosure

(see [25, 5, 6]), and then resume inverse mean curvature flow. Huisken and Ilmanen

used a level set formulation to characterize this jumping phenomenon. Consider a

scalar-valued function f on M , and let Σt be the level set of f :

Σt � tx PM |fpxq � tu.

In this setting, the inverse mean curvature flow equation (2.2.1) becomes:

div

�
∇f
|∇f |



� |∇f |. (2.3.1)

In the above, notice that the left hand side is the mean curvature of Σt, and the right

hand side is the reciprocal of the flow speed. Thus when |∇f | � 0, equation (2.3.1)

describes inverse mean curvature flow of the level sets. Note that this formulation

allows jumps in a natural way, since if f is constant on some region of M , then the

level sets of f would just jump over that region during the flow. Huisken and Ilmanen

defined a weak solution to (2.3.1) using an energy minimization principle, and proved

existence of such a weak solution by regularizing the degenerate elliptic equation

(2.3.1). They showed that the Hawking mass is still monotone as in the smooth
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inverse mean curvature flow case. In particular, the Hawking mass is non-decreasing

during jumps. In this way, they proved the Riemannian Penrose Inequaltiy (2.1) in

the case of a single blackhole (i.e. the outermost minimal surface Σ is connected).
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3

Inverse Mean Curvature Vector Flow in Spherically
Symmetric Spacetimes

In this chapter, we study inverse mean curvature vector flows in spherically sym-

metric spacetimes. The motivation comes from the fact that despite lack of general

existence theory, inverse mean curvature vector flow always works in spherical sym-

metry. In Section 3.1 and 3.2, terminologies and notations used in later discussions

are provided. In Section 3.3, we study closed embedded codimension-two surfaces in

a spacetime and the geometry of their normal bundles. We define mean curvature

vector fields and Hawking mass. We then define inverse mean curvature vector flow

of a closed embedded surface. In Section 3.4, we show that spherically symmet-

ric spheres are smooth global solutions to inverse mean curvature vector flow, and

the Hawking mass is monotonically non-decreasing if the spacetime also satisfies the

dominant energy condition.
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3.1 Spacetime, Einstein Equation, Dominant Energy Condition

A spacetime pN4, g,∇q considered in this thesis is a connected, smooth, time-oriented,

four-dimensional manifold with Lorentian metric g of signature p�,�,�,�q. ∇ is

the associated Levi-Civita connection. A tangent vector of N is called (see Figure

3.1)

1. timelike if gpv, vq   0;

2. null if gpv, , vq � 0;

3. spacelike if gpv, , vq ¡ 0.

Figure 3.1: Timelike, null and spacelike vectors in spacetime.

N is called time-orientable if it admits a smooth timelike vector field ~T . N is

time-oriented if such a vector field ~T is chosen. A vector field X is called future-

pointing if gpX, ~T q ¡ 0, or past-pointing if gpX, ~T q   0.

x�, �y :� x�, �yg is used to denote the inner product with respect to g, unless other-

wise specified.

A vector field X P ΓpTNq is said to be timelike (resp. null or spacelike) if at

every point p P N , Xppq is timelike (resp. null or spacelike). A submanifold M of N
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is said to be timelike (resp. null or spacelike) if every tangent vector of M is timelike

(resp. null or spacelike).

Let RicN and RN be the Ricci curvature and scalar curvature of the spacetime

respectively. The Einstein curvature tensor G is defined as:

G :� RicN � 1

2
RN � g. (3.1.1)

We assume that the spacetime satisfies the Einstein Equation:

G � 8πT, (3.1.2)

where T is the stress energy tensor. For any tangent vectors u, v of N , T pu, vq has

the physical meaning as the energy density going in the direction of u as observed

by someone going in the direction of v. The dominant energy condition is:

T pu, vq ¥ 0, @ u, v future-pointing, timelike. (3.1.3)

3.2 Spacelike Hypersurfaces

Given a spacetime. Consider a spacelike hypersurface M with globally defined,

future-timelike unit normal vector field n on M , and induced Riemannian metric

g � gM by restricting the spacetime metric onto M . M is also called a slice in a

spacetime. Let k be the second fundamental form of M , then the triple pM3, g, kq is

called a Cauchy data. Given a Cauchy data and the unit normal vector field n, we

define the energy density of M as µ :� T pn,nq. We can compute that

µ � 1

8π
Gpn,nq � 1

8π

�
RicNpn,nq � 1

2
RN � gpn,nq



(By the Einstein equation)

� 1

8π

�
RicNpn,nq � 1

2
RN



(n is unit time like)

� 1

16π

�
RM � ptracegkq2 � ||k||2g

�
. (3.2.1)
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where RM is the scalar curvature of pM, gq. We define the momentum density of M

to be a one-form Jp�q on M , such that JpXq :� T pn, Xq, for any tangent vector field

X on M . Then:

Jp�q � T pn, �q � 1

8π

�
RicNpn, �q � 1

2
RNgpn, �q




� 1

8π
RicNpn, �q (n is normal to M)

� 1

8π
divgppk � tracegkq � gq. (3.2.2)

Equation p3.2.1q and p3.2.2q follow from the Gauss and Codazzi equations respec-

tively, and they are called the constraint equations. The dominant energy condition

(3.1.3) implies that

µ ¥ ||J ||g. (3.2.3)

In the time-symmetric case where the second fundamental form k � 0, we see that

µ � RM

16π
, and J � 0. The dominant energy condition thus reduces to R ¥ 0.

3.3 Geometry of Codimension Two Surfaces in Spacetime

Let Σ be an closed, embedded, spacelike surface in N with codimension two. We

assume that Σ is an oriented surface such that at each point the notion of “outward”

and “inward” is well-defined. Let gΣ be the induced metric on Σ from the spacetime

metric g.

3.3.1 Rank-two Normal Bundle Geometry: Normal Connection and Connection
One-form

Let NΣ be the rank-two normal bundle of Σ. Define a connection on NΣ, denoted as

∇K, to be the projection of ∇ onto NΣ. Notice that since Σ is spacelike, NΣ has an

induced metric with signature p�,�q. Therefore, at each point p P Σ, NpΣ has four

quadrants: future-timelike, past-timelike, outward-spacelike and inward-spacelike.
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Given a local orthonormal frame te1, e2u of NΣ. Suppose e1 is outward-spacelike

and e2 is future-time like, then the geometry of NpΣ is depicted by Figure 3.2:

Figure 3.2: Rank two normal bundle at a point p on a surface with orthonormal
basis e1ppq and e2ppq.

Define a linear isomorphism, denoted as “K”, on each fiber NpΣ of the normal

bundle as follows: for any orthonormal basis tu, vu of NpΣ such that u is outward-

spacelike and v is future-timelike, set uK :� v, and then extend linearly to the entire

fiber. This definition is independent of the choice of basis, and is an involutive

isomorphism. Notice that

xuK, uKy � xv, vy � �1 � �xu, uy.

This isomorphism can be viewed as analogy of the 90� rotation in Euclidean space

(see [9]).

Given any tangent vector field X of Σ. If v is an outward-spacelike unit normal

vector field along Σ, then:

0 � ∇K
Xxv, vy � 2x∇K

Xv, vy.

Therefore ∇K
Xv is perpendicular to v, and hence is parallel to vK. From this one can

define a one-form αv on Σ, uniquely depends on v, such that:

αvpXq :� x∇K
Xv, v

Ky, @X P ΓpTΣq. (3.3.1)
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This definition yields the following straightforward corollary (see [9]):

Corollary 3.1. For a smooth section v P ΓpNΣq, the associated connection one-form

αv vanishes if and only if v is parallel with respect to the normal connection ∇K, i.e,

∇K
Xv � 0, @X P ΓpTΣq.

3.3.2 Mean Curvature Vector Field, Hawking Mass and Inverse Mean Curvature
Vector Flow

We define

~II : TΣ � TΣ ÝÑ NΣ, pX, Y q ÞÑ p∇XY q|NΣ (3.3.2)

to be the second fundamental form of Σ, where X, Y are tangent vector fields along

Σ, and p∇XY q|NΣ is the projection of ∇XY onto the normal bundle of Σ. Define

the mean curvature vector field of Σ to be the trace of the second fundamental form

with respect to gΣ:

~HΣ :� tracegΣ
~II. (3.3.3)

Therefore, ~HΣ is an inward-pointing normal vector field along Σ. Given any

normal vector field ~n, define the mean curvature scalar in the direction of ~n to be:

H~n :� �x ~HΣ, ~ny. (3.3.4)

Given pΣ, gΣq and the mean curvature vector ~HΣ, the Hawking mass of Σ is

defined to be:

mHpΣq :�
c

|Σ|
16π

�
1 � 1

16π

»
Σ

gp ~HΣ, ~HΣq dAΣ



, (3.3.5)

where |Σ| is the area of the surface Σ.
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Definition 3.3.1. Given a spacetime pN, gq and a surface pΣ2, gΣq. Define the in-

verse mean curvature vector field of Σ to be:

~IΣ :� �
~HΣ

x ~HΣ, ~HΣy
. (3.3.6)

According to our sign convention for ~HΣ, ~IΣ thus defined is outward-pointing.

Definition 3.3.2 (Smooth Inverse Mean Curvature Vector Flow). Given a closed

embedded surface Σ2 in a spacetime pN4, gq. A smooth inverse mean curvature vector

flow of Σ is a smooth family of surfaces F : Σ � r0, T s ÝÑ N of Σ satisfying the

following evolution equation:

B
BsF px, sq �

~IΣspx, sq, s P r0, T s and px, sq P Σs :� F pΣ, sq. (3.3.7)

T ¡ 0 could also be 8. By the first variation of area formula (see Equation A.3.7

in appendix A.3), the rate of change of area form of the flow surfaces under smooth

inverse mean curvature vector flow is given by:

d

ds
dAΣs � �x ~HΣs , ~IΣsydAΣs � dAΣs . (3.3.8)

That is, the rate of the area form of each surface is the area form itself, everywhere

on each surface. This is a special case of a uniformly area expanding flow first defined

by H. Bray, J. Jauregui and M. Mars in [10].

3.4 Model Spacetime: Spherically Symmetric Spacetime

In this section, we study spherically symmetric spacetimes. The main motivation

comes from the fact that, even though inverse mean curvature vector flow lacks a

general existence theory, smooth solutions still exist in many spherically symmetric

30



spacetimes. Moreover, the Hawking mass is monotonically non-decreasing if the

spacetime satisfies the dominant energy condition. Thus, it is critical to understand

the geometry of spherical symmetry.

Definition 3.4.1. A spacetime pN4, gq is said to be spherically symmetric if its

isometry group IsompN4q contains a subgroup G that is isomorphic to the rotation

group SOp3q; moreover for any point p P N , the orbit of p under the action of G is

a two-sphere with metric a multiple of the standard round metric.

From the above definition, N4 and standard sphere S2 share SOp3q as a subgroup

in their isometry groups, thus N4 share some of the symmetries with S2, and hence

the term spherically symmetric.

Proposition 3.2. If pN4, gq is a spherically symmetric spacetime that admits a

coordinate chart tt, r, θ, φu, such that g takes the form:

g �

���������

t r θ φ

t �v2pt, rq 0 0 0

r 0 u2pt, rq 0 0

θ 0 0 r2 0

φ 0 0 0 r2 sin2 θ

��������

(3.4.1)

where u and v are smooth functions of t and r only. Then within each t � constant

slice, smooth inverse mean curvature vector flow of coordinate sphere St,r exists for

all time with monotonically non-decreasing Hawking mass.

Remark. Roughly speaking, all spherically symmetric spacetimes outside blackholes

admit such metrics as in p3.4.1q.

Proof. Let gt,r be the metric on St,r, then

gt,r � r2dθ2 � r2 sin2 θdφ2,
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and its inverse is given by:

g�1
t,r �

1

r2
dθ2 � 1

r2 sin2 θ
dφ2.

Let ~Ht,r be the mean curvature vector of St,r. Notice that t B
Bt
, B
Br
u forms a frame

for the normal bundle of St,r, and thus Ht,r can be computed as follows:

~Ht,r � gijt,rp∇BiBjqnor

� gijt,r

�x∇BiBj, Bty
xBt, Bty Bt � x∇BiBj, Bry

xBr, Bry Br



� gθθt,r

�x∇BθBθ, Bty
xBt, Bty Bt � x∇BθBθ, Bry

xBr, Bry Br


� 2gθφt,r

�x∇BθBφ, Bty
xBt, Bty Bt � x∇BθBφ, Bry

xBr, Bry Br



� gφφt,r

�
x∇BφBφ, Bty
xBt, Bty Bt �

x∇BφBφ, Bry
xBr, Bry Br

�

� gθθt,rpΓ
t

θθBt � Γ
r

θθBrq � 0 � gφφt,r pΓtφφBt � Γ
r

φφBrq (g�1
t,r is diagonal)

� 1

r2

�
� r

u2

	
Br � 1

r2 sin2 θ

�
�r sin2 θ

u2



Br (See Section A.1)

� �2

r

1

u2
Br. (3.4.2)

That is

~Ht,r � �2

r

1

u2
Br. (3.4.3)

The inverse mean curvature vector is:

~It,r � �
~Ht,r

x ~Ht,r, ~Ht,ry
�

2
r

1
u2Br

x�2
r

1
u2Br,�2

r
1
u2Bry

�
2
r

1
u2Br

4
r2

1
u4u2

� r

2
Br. (3.4.4)

Therefore, inverse mean curvature vector flow of St,r is a reparametrization of

radial flow, and hence is smooth and exits for all time.
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To prove monotonicity of Hawking mass, recall that:

mHpSt,rq �
c
|St,r|
16π

�
1 � 1

16π

»
St,r

gp ~Ht,r, ~Ht,rq dAt,r
�
, (3.4.5)

where dAt,r is the area form of St,r, and |St,r| is the area of St,r. Note that

|St,r| �
»
St,r

dAt,r �
» 2π

0

» π
0

r2 sin θ dθdφ

� r2

» 2π

0

2 dφ

� 4πr2.

Plug the mean curvature vector of St,r (3.4.3) into the Hawking mass equation p3.4.5q,
we get:

mHpSt,rq �
c

4πr2

16π

�
1 � 1

16π

»
St,r

g

�
�2

r

1

u2
Br,�2

r

1

u2
Br


dAt,r

�

� r

2

�
1 � 1

16π

»
St,r

4

r2

1

u4
gpBr, Brq dAt,r

�

� r

2

�
1 � 1

16π

» 2π

0

» π
0

4

r2

1

u2
r2sinθ dθ dφ




� r

2

�
1 � 1

4π

1

u2
4π




� r

2

�
1 � 1

u2



. (3.4.6)

By Equation (3.4.4), the variation of the Hawking mass of St,r along inverse mean

curvature vector flow is given by:

~It,rpmHpSt,rqq � r

2

BmHpSt,rq
Br � r

2

�
1

2

�
1 � 1

u2



� r

u,r
u3

�
.
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Let G be the Einstein curvature tensor of pN4, gq. GpBt, Btq can be computed as (see

Equation pA.1.8q in Appendix A.1):

GpBt, Btq � 2

r

u,r
u3
v2 � 1

r2
v2

�
1 � 1

u2



� 2v2

r2

�
1

2

�
1 � 1

u2



� r

u,r
u3

�
. (3.4.7)

By the dominant energy condition (3.1.3), GpBt, Btq ¥ 0. Therefore

1

2

�
1 � 1

u2



� r

u,r
u3

¥ 0, (3.4.8)

which implies that ~It,rpmHpSt,rqq ¥ 0, as desired.

For any spherically symmetric spacetime in Proposition 3.2, it can then be foli-

ated by t � constant spacelike hyperplanes, and each hyperplane can be foliated by

smooth inverse mean curvature vector flow spheres (see Figure 3.3).

Figure 3.3: Inverse mean curvature vector flow of coordinate spheres St,r in spher-
ically symmetric spacetime (3.4.1).

34



4

Spacetimes that Admit Inverse Mean Curvature
Vector Flow Solutions

In this chapter we construct non-spherically symmetric, non-static spacetimes that

admit smooth global solutions to inverse mean curvature vector flows. Surfaces we

study here satisfy the topological and geometric setups defined in Section 3.3. In

Section 4.1, we recall the definition of inverse mean curvature vector flow and the

bad existence theory of such flows. Motivated by the spherically symmetry case, in

Section 4.2, we construct spacetimes that admit a special coordinate chart (called an

inverse mean curvature vector flow coordinate chart) in which smooth inverse mean

curvature vector flow of coordinate spheres exists for all time. We show that there in

fact exist infinitely many spacetimes that admit such coordinate charts, and hence

admit smooth solutions to inverse mean curvature vector flow.

In Section 4.3, we give a coordinate-free analogue of our construction, and show

that we can actually “steer” a spacetime metric in a certain direction to make the

mean curvature vector of a surface embedded in a spacelike hypersurface M tangen-

tial to M . Finally in Section 4.4, we discuss some generalizations of the technique

we use in constructing inverse mean curvature vector flow coordinates.
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4.1 Motivations from Spherically Symmetric Spacetimes and Main
Results

Given a spacetime pN4, gq and a closed codimension two surface Σ with induced

metric gΣ and mean curvature vector ~HΣ, recall from Section 3.3.2 that a smooth

inverse mean curvature vector flow of Σ is a normal variation

F : Σ � r0, T s ÝÑ N, pΣ, sq ÞÑ F pΣ, sq �: Σs,

such that

B
BsF px, sq �

~IΣspx, sq, @ px, sq P Σs, (4.1.1)

where ~IΣs is the inverse mean curvature vector of Σs defined as

~IΣs :� �
~HΣs

x ~HΣs , ~HΣsyg
.

The inverse mean curvature vector flow equation 4.1.1 (same as Equation 3.3.7) is

a forward-backward parabolic PDE, forward-parabolic in spacelike directions and

backward-parabolic in timelike directions. Such a PDE lacks a general existence

theory. However, such PDEs can still have solutions if we start with the “right”

initial conditions. In spherically symmetric spacetimes, the “right” initial surfaces

are spherically symmetric spheres. Had we chosen some other sphere to start with,

inverse mean curvature vector flow is very likely to not exist. This is due to the

mean curvature vector computation in Equation 3.4.3 in spherical symmetry: it is

radial and has no components in the timelike direction, therefore the inverse mean

curvature vector flow of spheres will be contained inside t � constant spacelike slices.

Geometrically, spherical symmetry eliminates all the timelike “wiggles” of the flow

surfaces, hence restricting the flow direction to be spacelike. Since the inverse mean

curvature vector flow equation is backward-parabolic only in timelike directions, in-
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verse mean curvature vector flow exists without running into singularities in spherical

symmetry (see Figure 3.3).

How do we generalize the spherically symmetric case to non-symmetric space-

times? Note that the mean curvature vector ~HΣ of Σ is a section of the normal

bundle NΣ, and thus has a timelike component and a spacelike component. Mo-

tivated by the spherically symmetric case, intuitively if the flow surfaces all have

“purely spacelike” mean curvature vectors, we might hope to get a better existence

theory.

Proposition 4.1 ([8]). The family of closed embedded spacelike surfaces tΣsu is a

solution to the smooth inverse mean curvature vector flow with spacelike inverse mean

curvature vector ~IΣs everywhere on the surfaces if and only if there exists a spacelike

hypersurface M3 � N , such that the mean curvature vector ~HΣs is tangential to M

at all px, sq, and tΣsu is a solution to the smooth inverse mean curvature flow in M .

Proof. Given tΣsu a solution to the smooth inverse mean curvature vector flow with

spacelike inverse mean curvature vector ~IΣs . Consider the hypersurface M of N

defined by the union of all the surfaces Σs, i.e. the “sweep out” region of the the

flow surfaces. Since the flow is smooth and spacelike, M is a smooth manifold which

is spacelike as well. ~HΣs is tangential to M by the construction of M . Since Σs is of

codimension one in M , ~HΣs is parallel to the unit outward normal vector field νΣs

along Σs, i.e.,

~HΣs � �λνΣs , (4.1.2)

at each px, sq P Σs for some smooth positive function λ. λ is chosen to positive since

~HΣs points inward. Therefore

~IΣs � �
~HΣs

x ~HΣs , ~HΣsy
� λνΣs

x�λνΣs ,�λνΣsy
� λνΣs

λ2xνΣs , νΣsy
� νΣs

λ
� νΣs

HΣs

, (4.1.3)
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where HΣs is the mean curvature scalar of Σs in the direction of νΣs , defined by

Equation 3.3.4:

HΣs :� �x ~HΣs , νΣsy � �x�λνΣs , νΣsy � λ.

From equation (4.1.3), we see that tΣsu indeed is a solution to the smooth inverse

mean curvature flow in M .

Conversely, suppose M is a spacelike hypersurface and tΣsu is a solution to the

smooth inverse mean curvature flow in M . Assuming that ~HΣs is tangential to M

at each px, sq, we know that ~HΣs is spacelike as well. Moreover, by reversing the

computations in equation (4.1.3), we have

~IΣs � �
~HΣs

x ~HΣs , ~HΣsy
.

Thus tΣsu is a solution to the smooth inverse mean curvature vector flow equation

in N , with spacelike inverse mean curvature vectors.

Therefore spacelike smooth inverse mean curvature vector flow solutions in N

correspond to smooth inverse mean curvature flow solutions in a spacelike hyper-

surface of N with tangential mean curvature vector fields. Huisken and Ilmanen

defined a weak notion of inverse mean curvature flow in which jumps are allowed.

This suggests the following definition of a weak solution of inverse mean curvature

vector flow:

Definition 4.1.1 (Weak Solution to Inverse Mean Curvature Vector Flow, [8]). A

family of spacelike surfaces tΣsu is said to be a weak solution to the inverse mean

curvature vector flow equation if there exists a spacelike hypersurface M in N con-

taining Σs such that ~HΣs is tangential to M everywhere for all s P r0, T s, and tΣsu is

a solution to Huisken-Ilmanen inverse mean curvature flow in M (i.e. with jumps).
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Now we focus on the problem of finding spacetimes with inverse mean curvature

vector flow solutions.

Suppose a spacetime pN4, gq admits the following special foliation: N is foliated

by spacelike hyperplanes, and then within each hyperplane, smooth inverse mean cur-

vature vector flow of spheres exists and foliates the entire hyperplane. Consequently,

the mean curvature vector of the flow spheres are tangential to the hyperplane. If

N admits such a special “double” foliation (e.g. spherically symmetric spacetimes),

then N has to be topologically equivalent to pR3zB1q � R, where B1 is the closed

unit ball in R3.

Suppose pN4, gq admits such a special foliation. We can use this to define co-

ordinates that generalize the spherically symmetric coordinates. We define the t-

coordinate by setting each hyperplane as t � constant, thus the t-coordinate tells us

which hyperplane we are on. For each inverse mean curvature vector flow sphere,

define A � 4πr2, where A is the area of that sphere. This defines a very natu-

ral r-coordinate. Since inverse mean curvature vector flow is area expanding, the

r-coordinate is well-defined. For simplicity we assume that r ¥ 1, i.e. the initial

spheres on each hyperplane have area 4π. Then define pθ, φq-coordinates on an ini-

tial sphere, 0   θ   π and 0   φ   2π, such that the area form satisfies

dA0 � Ap0q
4π

sin θdθdφ � sin θdθdφ, (4.1.4)

where Ap0q is the area of the initial sphere. Extend pθ, φq by setting them to be con-

stant along perpendicular directions of the initial sphere, such that pθ, φq coordinates

are defined for each sphere. By the extension, B
Br

will be perpendicular to each sphere.

The equation for the area form (4.1.4) will be preserved: dAr � Aprq
4π

sin θdθdφ�. See

� In smooth inverse mean curvature vector flow, d
ds pdAsq � �x~Is, ~HsydAs � dAs, where dAs is

the area form of Σs. The solution to this equation is dAs � esdA0. The area of Σs is thus given by

Apsq � Ap0qes � 4πr2, by the definition of the r-coordinate. Thus es Ap0q
4π � r2. Therefore the area

form in the r parameter is dAr � esdA0 � es Ap0q
4π sin θdθdφ � r2 sin θdθdφ � Aprq

4π sin θdθdφ.
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Figure 4.1 for an illustration.

Figure 4.1: Special foliation of a spacetime pN4, gq: first foliated by hyperplanes,
then each hyperplane is foliated by inverse mean curvature vector flow of spheres.
This generalizes the spherically symmetric case in Figure 3.3.

Therefore we have proved the “only-if” direction of the following theorem:

Theorem 4.2. A spacetime pN4, gq is foliated by spacelike hyperplanes, and each

hyperplane is foliated by smooth inverse mean curvature vector flow of spheres if and

only if there exists a coordinate chart tt, r, θ, φu of N , such that in this coordinate

chart the metric has the form:

g �

���������

t r θ φ

t �v2 d e f

r d u2 0 0

θ e 0 a c

φ f 0 c b

��������

(4.1.5)
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where u, v, a, b, c, d, e, f are smooth functions on N , and the following four conditions

are satisfied:

p1q x BBr ,
B
Bθ y � 0; (4.1.6)

p2q x BBr ,
B
Bφy � 0; (4.1.7)

p3q dAt,r � r2 sin θdθdφ pi.e. ab� c2 � r4 sin2 θq; (4.1.8)

p4q ~Ht,r is tangential to the t � constant hyperplane; (4.1.9)

where dAt,r and ~Ht,r are the area form and the mean curvature vector of the coordinate

sphere St,r, respectively.

Proof of the “if” direction. Given a coordinate chart tt, r, θ, φu of pN, gq such that

the g satisfies the four conditions, N is then foliated by t � constant slices which

are spacelike since the metric has the form p4.1.5q. For any t � constant slice, the

coordinate spheres tSt,ru are solutions of a normal flow since x B
Br
, B
Bθ
y � x B

Br
, B
Bφ
y � 0.

We reparametrize the flow by setting s :� C � 2 ln r, where C is a positive constant.

Then

d

dr
pdAq � d

ds
pdAqds

dr
� 2

r

d

ds
pdAq. (4.1.10)

On the other hand by condition (3)

d

dr
pdAq � d

dr
pr2 sin θdθdφq � 2r sin θdθdφ � 2

r
dA. (4.1.11)

Combing the two equations above, we have d
ds
pdAq � dA. Thus, by the first variation

of area formula, tSt,ru when reparameterized by r2 � Ces, are smooth solutions to

inverse mean curvature flow. By condition (4), the mean curvature vector of St,r

stays tangential to the slice, therefore tSt,ru with the above reparameterization are

smooth solutions to inverse mean curvature vector flow.
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Definition 4.1.2 (Inverse Mean Curvature Vector Flow Coordinate Chart). If a

spacetime pN4, gq admits a coordinate chart tt, r, θ, φu such that the four conditions

(4.1.6), (4.1.7), (4.1.8) and (4.1.9) are satisfied, then tt, r, θ, φu is called an inverse

mean curvature vector flow coordinate chart, and N is called a spacetime that admits

an inverse mean curvature vector flow coordinate chart.

We sometimes refer the fourth condition (4.1.9) as the steering condition, as it

forces the coordinate spheres to stay inside the spacelike hyperplane during inverse

mean curvature vector flow.

Many spherically symmetric spacetimes admit an inverse mean curvature vector

flow coordinate chart (e.g. coordinate chart (3.4.1) with d � e � f � c � 0, and

a � r2, b � r2 sin2 θ and radial mean curvature vector by Equation (3.4.3)). However,

given an arbitrary spacetime pN4, gq, it is generally impossible to reparametrize it

with an inverse mean curvature vector flow coordinate chart (e.g. a spacetime that

is not topologically equivalent to (R3zB1q � R). However, is it possible to construct

a spacetime that admits such a coordinate chart? In the next section we show that

we can actually construct many such spacetimes:

Proposition 4.3 (Existence of Spacetimes That Admit an Inverse Mean Curvature

Vector Flow Coordinate Chart). Let U :� pR3zB1q � R � R4. There exist infinitely

many spacetime metrics of the form of (4.1.5) that admits an inverse mean curvature

vector flow coordinate chart.

Combining Proposition 4.3 and Theorem 4.2, we have the following main theorem

of this thesis:

Theorem 4.4 (Main Theorem). There exist infinitely many non-spherically sym-

metric, non-static spacetimes that admit inverse mean curvature vector flow coordi-

nate charts. Given such a spacetime U with an inverse mean curvature vector flow
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coordinate chart pt, r, θ, φq and the constructed spacetime metric g. The coordinate

spheres St,r contained in each t � constant slice, when reparameterized by r2 � es,

are smooth global solutions to the inverse mean curvature vector flow equation.

4.2 Construction of Spacetimes That Admit Inverse Mean Curvature
Vector Flow Coordinate Charts

In this section we prove Proposition 4.3. Let U � pR3zB1q�R. It is easy to construct

a spacetime metric g that admits a coordinate chart tt, r, θ, φu that satisfies condition

(4.1.6) and (4.1.7). Simply define

g :�

���������

t r θ φ

t �v2 d e f

r d u2 0 0

θ e 0 a c

φ f 0 c b

��������

(4.2.1)

where a, b, c, d, e, f, u, v are arbitrary smooth functions on U . Choosing two of the

three variables a, b and c such that ab� c2 � r4 sin2 θ satisfies condition (4.1.8).

The fourth condition requires ~Ht,r, the mean curvature vector field of St,r, to be

tangential to the t � constant slice. This is equivalent to requiring ~Ht,r to be parallel

to B
Br

. We compute the conditions on the metric components such that this is true.

Lemma 4.5. The determinant of the spacetime metric g in (4.2.1) is given by:

|g| :� detpgq � p�u2v2 � d2qpab� c2q � eu2pcf � beq � fu2pce� afq (4.2.2)

� p�u2v2 � d2qpab� c2q � u2p2cef � be2 � af 2q (4.2.3)
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Moreover, the coordinate representation of the inverse pg�1q is given by:

pgq�1 �

������������

t r θ φ

t u2pab�c2q
|g|

�dpab�c2q
|g|

u2pcf�beq
|g|

u2pce�afq
|g|

r �dpab�c2q
|g|

�v2pab�c2q�fpce�afq�epcf�beq
|g|

�dpcf�beq
|g|

�dpce�afq
|g|

θ u2pcf�beq
|g|

�dpcf�beq
|g|

�u2v2b�u2f2�bd2

|g|
u2v2c�u2ef�cd2

|g|

φ u2pce�afq
|g|

�dpce�afq
|g|

u2v2c�u2ef�cd2

|g|
�u2v2a�u2e2�ad2

|g|

�����������

(4.2.4)

Proof. See Section A.2.1 in Appendix A.

4.2.1 Geometry of St,r and the Normal Bundle NSt,r

Fix a t � constant slice M . Let St,r be a coordinate sphere in M . We endow St,r

with the induced metric from g, denoted as gS. Then in the tθ, φu coordinate system,

gS has the following representation:

gS :� g|St,r �
��
θ φ

θ a c

φ c b

�
 (4.2.5)

Thus its inverse metric is:

g�1
S � 1

ab� c2

��
θ φ

θ b �c
φ �c a

�
 (4.2.6)

The normal bundle NSt,r of St,r is of rank-two. B
Br

is a nonzero section of NSt,r,

and thus can be used as a basis for the normal bundle. Let n be a complementary

basis vector field of the normal bundle that is orthogonal to B
Br

. Since B
Br

is out-

ward spacelike, we can assume that n is future timelike. Therefore using the basis

44



t B
Bt
, B
Br
, B
Bθ
, B
Bφ
u we can write n as

n � B
Bt � x

B
Br � y

B
Bθ � z

B
Bφ,

with x, y, z yet to be determined, such that

• xn, B
Br
y � 0;

• xn, B
Bθ
y � 0;

• xn, B
Bφ
y � 0.

We have three equations and three unknowns which give us

n � B
Bt �

�d
u2

B
Br �

cf � be

ab� c2

B
Bθ �

ce� af

ab� c2

B
Bφ. (4.2.7)

Lemma 4.6.

xn,ny � detpgq
u2pab� c2q �

detpgq
u2detpgSq �:

|g|
u2|gS| , (4.2.8)

where we set |gS| :� detpgSq.

Proof. See Section A.2.2 in Appendix A.

Remark. Caution that since n is timelike, xn,ny   0. Thus

||n||g � p�xn,nyq1{2 �
� �|g|
u2|gS|


1{2

. (4.2.9)

Let ter, enu be the normalized orthonormal frame obtained from t B
Br
,nu:

er :� B
Br{||

B
Br ||g �

1

u

B
Br , en :� n

||n||g .

Let

~It,r � �
~Ht,r

x ~Ht,r, ~Ht,ry
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be the outward-pointing inverse mean curvature vector. The geometry of the normal

bundle of St,r is given by Figure 4.2 below. Recall that ~Ht,r points inward by our

convention.

Figure 4.2: Normal bundle of coordinate sphere St,r.

4.2.2 Mean Curvature Vector of St,r

Now we have a coordinate sphere pSt,r, gSq with induced metric gS in pU, g,∇q, where

∇ is the Levi-Civita connection with respect to g. We have an orthonormal frame

ter, enu of the normal bundle NSt,r defined in the previous subsection. In this sub-

section we compute the mean curvature vector ~Ht,r of St,r. Recall the definition of
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~Ht,r from Equation (3.3.3):

~Ht,r � tracegS
~II (By definition of ~Ht,r)

� gijS
~II

� B
Bxi ,

B
Bxj



( B
Bxi
, B
Bxj

P t B
Bθ
, B
Bφ
u)

� gijS

�
∇ B

Bxi

B
Bxj


 ����
NSt,r

(By definition of ~IIp B
Bxi
, B
Bxj
q)

� gijS

�
x∇ B

Bxi

B
Bxj , eryer � x∇ B

Bxi

B
Bxj , enyen

�
(ter, enu is an orthonormal frame of NSt,r)

� gijS x∇ B

Bxi

B
Bxj , eryer � gijS x∇ B

Bxi

B
Bxj , enyen (4.2.10)

We compute the two parts in ~Ht,r separately. First of all

gijS x∇ B

Bxi

B
Bxj , ery �

1

u
gijS x∇ B

Bxi

B
Bxj ,

B
Br y �

1

u
gijS xΓ

k

ij

B
Bxk ,

B
Br y

� 1

u
gijS pΓ

t

ijgtr � Γ
r

ijgrrq ( B
Br

is perpendicular to B
Bθ
, B
Bφ

)

� 1

u
gtrpgθθS Γ

t

θθ � 2gθφS Γ
t

θφ � gφφS Γ
t

φφq

� 1

u
grrpgθθS Γ

r

θθ � 2gθφS Γ
r

θφ � gφφS Γ
r

φφq

� 1

u

1

|gS|
�
gtrpbΓtθθ � 2cΓ

t

θφ � aΓ
t

φφq � grrpbΓrθθ � 2cΓ
r

θφ � aΓ
r

φφq
�

� 1

u

1

|gS|
�
gtrp�q � grrp��q

�
(4.2.11)

where

p�q :� bΓ
t

θθ � 2cΓ
t

θφ � aΓ
t

φφ, (4.2.12)

and

p��q :� bΓ
r

θθ � 2cΓ
r

θφ � aΓ
r

φφ. (4.2.13)

We now compute all the related Christoffel symbols.
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Γ
t

θθ �
1

2

�
gttp2gθt,θ � gθθ,tq � gtrp2gθr,θ � gθθ,rq � gtθp2gθθ,θ � gθθ,θq � gtφp2gθφ,θ

� gθθ,φq
	

� 1

2

�
gttp2gθt,θ � gθθ,tq � gtrgθθ,r � gtθgθθ,θ � gtφp2gθφ,θ � gθθ,φq

	
� 1

2|g|
�
u2pab� c2qp2e,θ � a,tq � dpab� c2qa,r � u2pcf � beqa,θ � u2pce� afqp2c,θ

� a,φq
	

(4.2.14)

Γ
t

θφ �
1

2

�
gttpgφt,θ � gθt,φ � gθφ,tq � gtrpgφr,θ � gθr,φ � gθφ,rq � gtθpgφθ,θ � gθθ,φ � gθφ,θq

� gtφpgφφ,θ � gθφ,φ � gθφ,φq
	

� 1

2

�
gttpgφt,θ � gθt,φ � gθφ,tq � gtrgθφ,r � gtθgθθ,φ � gtφgφφ,θ

	
� 1

2|g|
�
u2pab� c2qpf,θ � e,φ � c,tq � dpab� c2qc,r � u2pcf � beqa,φ � u2pce� afqb,θ

	
(4.2.15)

Γ
t

φφ �
1

2

�
gttp2gφt,φ � gφφ,tq � gtrp2gφr,φ � gφφ,rq � gtθp2gφθ,φ � gφφ,θq � gtφp2gφφ,φ

� gφφ,φq
	

� 1

2

�
gttp2gφt,φ � gφφ,tq � gtrgφφ,r � gtθp2gφθ,φ � gφφ,θq � gtφgφφ,φ

	
� 1

2|g|
�
u2pab� c2qp2f,φ � b,tq � dpab� c2qb,r � u2pcf � beqp2c,φ � b,θq

� u2pce� afqb,φ
	

(4.2.16)

48



Γ
r

θθ �
1

2

�
grtp2gθt,θ � gθθ,tq � grrp2gθr,θ � gθθ,rq � grθp2gθθ,θ � gθθ,θq � grφp2gθφ,θ

� gθθ,φq
	

� 1

2

�
grtp2gθt,θ � gθθ,tq � grrgθθ,r � grθgθθ,θ � grφp2gθφ,θ � gθθ,φq

	
� 1

2|g|
�
� dpab� c2qp2e,θ � a,tq � r�v2pab� c2q � fpce� afq � epcf � beqsa,r

� p�dqpcf � beqa,θ � p�dqpce� afqp2c,θ � a,φq
	

(4.2.17)

Γ
r

θφ �
1

2

�
grtpgφt,θ � gθt,φ � gθφ,tq � grrpgφr,θ � gθr,φ � gθφ,rq � grθpgφθ,θ � gθθ,φ � gθφ,θq

� grφpgφφ,θ � gθφ,φ � gθφ,φq
	

� 1

2

�
grtpgφt,θ � gθt,φ � gθφ,tq � grrgθφ,r � grθgθθ,φ � grφgφφ,θ

	
� 1

2|g|
�
� dpab� c2qpf,θ � e,φ � c,tq � r�v2pab� c2q � fpce� afq � epcf � beqsc,r

� p�dqpcf � beqa,φ � p�dqpce� afqb,θ
	

(4.2.18)

Γ
r

φφ �
1

2

�
grtp2gφt,φ � gφφ,tq � grrp2gφr,φ � gφφ,rq � grθp2gφθ,φ � gφφ,θq � grφp2gφφ,φ

� gφφ,φq
	

� 1

2

�
grtp2gφt,φ � gφφ,tq � grrgφφ,r � grθp2gφθ,φ � gφφ,θq � grφgφφ,φ

	
� 1

2|g|
�
� dpab� c2qp2f,φ � b,tq � r�v2pab� c2q � fpce� afq � epcf � beqsb,r

� p�dqpcf � beqp2c,φ � b,θq � p�dqpce� afqb,φ
	

(4.2.19)
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With all the Christoffel symbols computed, we have:

p�q � bΓ
t

θθ � 2cΓ
t

θφ � aΓ
t

φφ

� 1

2|g|
!
u2pab� c2qr2be,θ ���a,tb � 2ce,φ � 2cf,θ ����2cc,t � 2af,φ ���ab,t s

� dpab� c2qra,rb� 2cc,r � ab,rs � u2pcf � beqra,θb� 2a,φc� 2ac,φ � ab,θs

� u2pce� afqr2bc,θ � a,φb� 2b,θc� ab,φs
)

(4.2.20)

The terms cancel in the second line above since ab� c2 � r4 sin2 θ, and thus is not a

function of t.

Next we compute

p��q � bΓ
r

θθ � 2cΓ
r

θφ � aΓ
r

φφ

� 1

2|g|
!
� dpab� c2qr2be,θ ���a,tb � 2ce,φ � 2cf,θ ����2cc,t � 2af,φ ���ab,t s

� r�v2pab� c2q � fpce� afq � epcf � beqsra,rb� 2cc,r � ab,rs

� dpcf � beqra,θb� 2a,φc� 2ac,φ � ab,θs � dpce� afqr2bc,θ � a,φb� 2b,θc� ab,φs
)

(4.2.21)
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Now plug (4.2.20) and (4.2.21) back into (4.2.11):

gijS x∇ B

Bxi

B
Bxj , ery �

1

u

1

|gS|
�
dp�q � u2p��q�

� 1

u

1

|gS|
1

2|g|
!
rdu2pab� c2q � u2dpab� c2qsr2be,θ � 2ce,φ � 2cf,θ � 2af,φs

� rd2pab� c2q � u2v2pab� c2q � fu2pce� afq � eu2pcf � beqsra,rb� 2cc,r � ab,rs

� rdu2pcf � beq � u2dpcf � beqsra,θb� 2a,φc� 2ac,φ � ab,θs

� rdu2pce� afq � u2dpce� afqsr2bc,θ � a,φb� 2b,θc� ab,φs
)

� 1

u

1

|gS|
1

2|g| rd
2pab� c2q � u2v2pab� c2q � fu2pce� afq � eu2pcf � beqsra,rb� 2cc,r

� ab,rs

� 1

u

1

|gS|
1

2|g| p�|g|qpab� c2q,r (By Equation 4.2.2)

� �1

u

4r3���sin2 θ

r4���sin2 θ

1

2
� �2

r

1

u
. (4.2.22)

Next we compute the second term in (4.2.10):

gijS x∇ B

Bxi

B
Bxj , eny �

1

||n||g g
ij
S x∇ B

Bxi

B
Bxj ,ny �

1

||n||g g
ij
S xΓ

t

ij

B
Bt ,ny (n K B

Br
, B
Bθ
, B
Bφ

)

� 1

||n||g g
ij
S Γ

t

ijxn,ny (n� B
Bt

is spacelike)

� �gijS Γ
t

ij||n||g � �||n||gpgθθS Γ
t

θθ � 2gθφS Γ
t

θφ � gφφS Γ
t

φφq

� �||n||g|gS| p�q (4.2.23)

where p�q is computed in (4.2.20). Now plug (4.2.8) into the above, we get:

gijS x∇ B

Bxi

B
Bxj , eny � �

� �|g|
u2|gS|


1{2
1

|gS| p�q � �1

u

p�|g|q1{2
|gS|3{2 p�q. (4.2.24)

Combing (4.2.22) and (4.2.24), we have:
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Proposition 4.7. The mean curvature vector ~Ht,r of coordinate sphere St,r in the

spacetime metric g (4.2.1) is given by:

~Ht,r � �2

r

1

u
er � 1

u

p�|g|q1{2
|gS|3{2 p�qen. (4.2.25)

where p�q is given by (4.2.20).

Corollary 4.8. The mean curvature vector ~Ht,r of coordinate sphere St,r is parallel

to B
Br

everywhere if and only if p�q � 0, where p�q is given by (4.2.20). Moreover, in

this case, the mean curvature vector equals:

~Ht,r � �2

r

1

u
er. (4.2.26)

Notice the similarity between the mean curvature vector expression above and

the mean curvature vector in the spherically symmetric case in (3.4.3).

Proof. This is quite straightforward since ~Ht,r is parallel to B
Br

everywhere if and only

if x ~Ht,r, eny � 0. Expand this out we get:

0 � x ~Ht,r, eny � x1

u

p�|g|q1{2
|gS|3{2 p�qen, eny � �1

u

p�|g|q1{2
|gS|3{2 p�q.

Since u � 0, the above is equivalent to

p�q � 0,

as desired.

Therefore the fourth condition in the definition of inverse mean curvature vector
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flow coordinate chart is equivalent to p�q � 0, that is:

0 � 1

2|g|
!
u2pab� c2qr2be,θ � 2ce,φ � 2cf,θ � 2af,φs

� dpab� c2qpab� c2q,r � u2pcf � beqra,θb� 2a,φc� 2ac,φ � ab,θs

� u2pce� afqr2bc,θ � a,φb� 2b,θc� ab,φs
)

Or equivalently, using ab� c2 � r4 sin2 θ,

0 � r2be,θ � 2ce,φ � 2cf,θ � 2af,φs � d
4r3 sin2 θ

u2

� cf � be

r4 sin2 θ
ra,θb� 2a,φc� 2ac,φ � ab,θs � ce� af

r4 sin2 θ
r2bc,θ � a,φb� 2b,θc� ab,φs.

(4.2.27)

Here is the upshot: Equation (4.2.27) is zeroth order in the metric component

d, thus we can choose two of the three variables a, b, c, and e, f, u, v all together 6

variables, and solve for d explicitly:

d � � u2

4r3 sin2 θ

!
r2be,θ � 2ce,φ � 2cf,θ � 2af,φs � cf � be

r4 sin2 θ
ra,θb� 2a,φc� 2ac,φ � ab,θs

� ce� af

r4 sin2 θ
r2bc,θ � a,φb� 2b,θc� ab,φs

)
. (4.2.28)

Thus all four conditions (4.1.6), (4.1.7) and (4.1.8) and (4.1.9) are solvable with

infinitely many solutions. Combing the above, we have proved Proposition 4.3 and

hence the main theorem 4.4.

There are six degrees of freedom in constructing our spacetime metric g that

admits an inverse mean curvature vector flow coordinate chart. Moreover, the six

free variables do not need to be spherically symmetric. The spherically symmetric

(3.4.1) metric is a special case of this large set of spacetime metrics. It is unknown if

perturbations of spherically symmetric spacetime with inverse mean curvature vector

flow coordinate chart still have inverse mean curvature vector flow solutions. More

specifically, we conjecture that:
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Conjecture 4.1. Given Minkowski space with inverse mean curvature vector flow

coordinate chart that can be smoothly extended to the boundary, consider a pertur-

bation of the spacetime metric. The resulting spacetime still admits inverse mean

curvature vector flow solutions (in a single spacelike hypersurface) that exist for all

time.

Notice that in Equation (4.2.28) if all the variables are smooth then d will be

smooth except possibly when sin θ � 0, since d is not defined by our formula there

(see (4.2.28)). This happens at the north (θ � 0) and south pole (θ � π), which are

two coordinate chart singularities, not metric singularities of the spacetime.

If c, e, f are chosen to be 0 at a neighborhood of the north and the south pole,

then the right hand side of (4.2.28) will be zero there. In this way d can be extended

smoothly across the two coordinate chart singularities, and will be smooth on the

entire spacetime.

Another way to extend d smoothly over the coordinate chart singularities is to

choose the metric to be spherically symmetric in a neighborhood of the north and

south pole:

g �

���������

t r θ φ

t �v2pt, rq 0 0 0

r 0 u2pt, rq 0 0

θ 0 0 r2 0

φ 0 0 0 r2 sin2 θ

��������

(4.2.29)

This has the advantage that d � 0 around the coordinate chart singularities. Then

extend a, b, c, e, f smoothly to the entire spacetime while maintaining the condition

that ab � c2 � r4 sin2 θ. The resulting metric still satisfies the four conditions since

smooth inverse mean curvature vector flow of spheres exists for all time in spherically
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symmetry. d will be smooth since d � 0 identically.

One could study more general asymptotic conditions for (4.2.28) to be smooth

and bounded as θ approaches 0 or π, but we choose not to discuss it further here.

Remark. We can actually prove that ~Ht,r takes the form (4.2.26) in inverse mean

curvature vector flow coordinates without computing it out explicitly. We now show

that as a sanity check of our computation. In inverse mean curvature vector flow

coordinates ~Ht,r is parallel to B
Br

, thus let λ � λpt, r, θ, φq such that

~Ht,r � λ
B
Br .

The inverse mean curvature vector is now

~It,r � �
~Ht,r

x ~Ht,r, ~Ht,ry
� � λ B

Br

xλ B
Br
, λ B

Br
y � � 1

λu2

B
Br .

By the first variation of area formula (A.3.7), the rate of change of the area form of

St,r under outward radial flow is given by

d

dr
dASt,r � �x ~Ht,r,

B
Br ydASt,r

� �x ~Ht,r,
B
Br yr

2 sin θdθdφ

� �λu2r2 sin θdθdφ (4.2.30)

Notice the left hand side of the above equals to

d

dr
dASt,r �

d

dr
pr2 sin θdθdφq � 2r sin θdθdφ.

Thus matching the two sides we get:

2r sin θdθdφ � �λu2r2 sin θdθdφ,
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that is λ � �2
r

1
u2 . Therefore

~Ht,r � λ
B
Br � �2

r

1

u2

B
Br � �2

r

1

u
er,

which is the same as (4.2.25).

4.3 Coordinate Free Analogue and Steering Parameters

In the previous section we have shown that there exist many spacetimes that ad-

mit inverse mean curvature vector flow coordinate chart, in which the coordinates

spheres are solutions to the inverse mean curvature vector flow equation. The fourth

condition (4.1.9) in the definition of inverse mean curvature vector flow coordinates

can be viewed as a steering condition that keeps the flow direction of coordinate

spheres tangential to a spacelike hypersurface.

Given a spacetime pN4, g,∇q, a spacelike hypersurface pM3, gq with induced met-

ric g, and a closed embedded surface pΣ, gΣq in M with induced metric gS. Assuming

the normal bundle of Σ is trivial, there is a unique unit outward normal vector field

of Σ in M , denoted as er. Let et be the unit outward normal vector field of Σ in N

that is perpendicular to er. Since M is spacelike, er is spacelike and et is timelike.

Define a local coordinate chart tθ, φu on Σ, and let t B
Bθ
, B
Bφ
u be the local coordinate

frame. Figure 4.3 depicts the above set up, in which the mean curvature vector ~HΣ is

not necessarily tangential to M . We can extend the frame tet, er, B
Bθ
, B
Bφ
u to a frame

on a neighborhood of Σ in N , and we will identify the frame with its extension.

Since the local frame tet, er, B
Bθ
, B
Bφ
u is not fully a coordinate frame, the commu-

tator coefficients Ck
ij defined as:

rαi, αjs � Ck
ijαk, αi P tet, er, BBθ ,

B
Bφu (4.3.1)
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are not necessarily zero. We need these coefficients to compute the connection coef-

ficients with respect this frame later.

Figure 4.3: Setup of inverse mean curvature vector flow steering.

With the local frame tet, er, B
Bθ
, B
Bφ
u of the tangent bundle of N , let the associated

dual frame of the cotangent bundle of N be tβt, βr, dθ, dφu, where

βipejq � δij, i, j P tt, ru.

With respect to this dual frame, we can write the spacetime metric g as

rgs �

���������

et er
B
Bθ

B
Bφ

et �1 0 0 0

er 0 1 0 0

B
Bθ

0 0 a c

B
Bφ

0 0 c b

��������

(4.3.2)

where a, b, c are smooth functions on N .

We want to change the metric so that ~HΣ is tangential to M . Recall that the

fourth condition (4.1.9) in the construction of the inverse mean curvature vector

flow coordinates is a zeroth order equation for d, the pt, rq-metric component. This

motivates the following definition:
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Definition 4.3.1 (Steering of Spacetime Metric). Given a spacetime metric g. A

metric gQ on N is called a steering of g if

gQ :� g �Qpβt b βr � βr b βtq (4.3.3)

for some smooth function Q P C8pNq. Q is called a steering parameter.

Note that the coefficient matrix for the steered metric gQ is given by:

rgQs �

���������

et er
B
Bθ

B
Bφ

et �1 Q 0 0

er Q 1 0 0

B
Bθ

0 0 a c

B
Bφ

0 0 c b

��������

(4.3.4)

Thus geometrically, et and er are not necessarily orthogonal to each other in the

steered metric (see Figure 4.4).

Figure 4.4: After steering the spacetime metric g, et and er are not necessarily
orthogonal to each other. The metric g on M remains the same.

Definition 4.3.2 (Area Expanding Condition). Σ �M given as above is said to be

area expanding if

erpab� c2q ¡ 0. (4.3.5)

58



Theorem 4.9. Let pN4, gq, a spacelike hypersurface M3 and a closed embedded sur-

face pΣ2, gΣq in M be given as above. If Σ is area expanding, then there exists a

unique smooth steering parameter Q � QΣ P C8pNq, such that in the steered space-

time metric gQ, ~HΣ is tangential to M everywhere on Σ.

Proof. To show that there exists Q such that ~HΣ is tangential to M , it suffices to

find Q such that ~HΣ (with respect to gQ) is parallel to er.

Notation: In the following the subscript Q will be dropped for simplicity and all

the spacetime metric will be referring to the steered metric gQ.

The computations are similar to the inverse mean curvature vector flow coordi-

nates case. We divide the computations into five steps:

Step 1: Pick a local normal variation of Σ and let tΣsu be the variational surfaces,

s P p0, εq. Since Σ0 � Σ is area expanding, we can assume that this normal variation

is also area expanding. Extend tet, eru to a neighborhood of Σ in N such that er

remains outward unit normal to each Σs in M . Define an r-coordinate by requiring

the area of Σs to be Apsq �: 4πr2. Since the variation is area expanding, r is well-

defined. Extend t B
Bθ
, B
Bφ
u to a neighborhood of Σ in N such that they are constant

along normal directions of Σ in M . By this extension B
Br

is perpendicular to each Σs.

Thus there exists a function λ such that er � λ B
Br

.

rer, BBθ s � rλ BBr ,
B
Bθ s � �λ,θ BBt . (4.3.6)

This implies that Cθ
rθ � 0. Similarly Cφ

rφ � 0.

Step 2: After steering the metric g, er and et are not necessarily orthogonal to

each other. Let n be the normal vector of Σ such that xn, ery � 0. The computation

of n is the same as the inverse mean curvature vector flow coordinate case (4.2.7),

and we obtain:

n � et �Qer. (4.3.7)
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Note that xn,ny � xet �Qer, et �Qery � �1� 2Q2 �Q2 � �p1�Q2q, which agrees

with (4.2.8) with our metric gQ.

Let en :� n
||n||

� et�Qer
p1�Q2q1{2

be the unit timelike normal vector.

Step 3: With respect to the orthonormal frame ten, eru of the normal bundle NΣ,

we can write the mean curvature vector as

~HΣ � x ~HΣ, eryer � x ~HΣ, enyen. (4.3.8)

Therefore ~HΣ is parallel to er if and only if x ~HΣ, eny � 0. Now we compute the

condition on Q such that this inner product vanishes.

x ~HΣ, eny � xtracegΣ
~II, eny � gijΣ x

�
∇BiBj

� |NΣ, eny (Bi, Bj P t B
Bθ
, B
Bφ
u)

� gijΣ
@x∇BiBj, eryer � x∇BiBj, enyen, en

D
� �gijΣ x∇BiBj, enyxen, eny � gijΣ x∇BiBj, eny (xen, eny � �1)

� 1

||n||g
ij
Σ x∇BiBj,ny �

1

||n||g
ij
Σω

t
ijxet,ny

� 1

||n||g
ij
Σω

t
ijp�p1 �Q2qq � �gijΣωtij

1 �Q2

p1 �Q2q1{2

� �p1 �Q2q1{2gijΣωtij (4.3.9)

where ω is the connection coefficients of the connection ∇Q with respect to the

metric gQ and the local frame tet, er, B
Bθ
, B
Bφ
u, which is not necessarily a coordinate

frame. This is an important difference from the inverse mean curvature vector flow

coordinates case.

Recall that

ωkij �
1

2
gklpgil,j � gjl,i � gij,l � Clij � Clji � Cijlq, (4.3.10)

where Cijl :� glmC
m
ij , and Cm

ij is the commutator coefficients defined in (4.3.1).
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Notation: we use gij,k to denote ekpgijq, not necessarily a coordinate derivative.

Step 4: Now we compute the four connection coefficients as follows:

ωtθθ �
1

2
gtip2gθi,θ � gθθ,i � 2Ciθθ � Cθθiq

� 1

2
gtip2gθi,θ � gθθ,i � 2gθjC

j
iθ ����

�*0
gijC

j
θθ q (t B

Bθ
, B
Bφ
u is a coordinate frame)

� 1

2

!
gttp
��

��*0
2gθt,θ � gθθ,t � 2gθjC

j
tθq � gtrp

��
��*0

2gθr,θ � gθθ,r � 2gθjC
j
rθq � 0 � 0

)
� 1

2

!
gttp�gθθ,t � 2gθθC

θ
tθ � 2gθφC

φ
tθq � gtrp�gθθ,r � 2gθθC

θ
rθ � 2gθφC

φ
rθq
)

� ab� c2

2|g|
!
p�a,t � 2aCθ

tθ � 2cCφ
tθq �Qp�a,r � 2aCθ

rθ � 2cCφ
rθq
)

(4.3.11)

ωtθφ �
1

2
gtipgφi,θ � gθi,φ � gθφ,i � Ciθφ � Ciφθ � Cθφiq

� 1

2
gtipgφi,θ � gθi,φ � gθφ,i � gφjC

j
iθ � gθjC

j
iφ ����

��*0
gijC

j
θφq

� 1

2

!
gttp���*

0
gφt,θ ����*

0
gθt,φ � gθφ,t � gφθC

θ
tθ � gφφC

φ
tθ � gθθC

θ
tφ � gθφC

φ
tφq

� gtr��
�*0

gφr,θ ����*
0

gθr,φ � gθφ,r � gφθC
θ
rθ � gφφC

φ
rθ � gθθC

θ
rφ � gθφC

φ
rφq
)

� ab� c2

2|g|
!
p�c,t � cCθ

tθ � bCφ
tθ � aCθ

tφ � cCφ
tφq �Qp�c,r � cCθ

rθ � bCφ
rθ � aCθ

rφ

� cCφ
rφq
)

(4.3.12)

ωtφθ �
1

2
gtipgθi,φ � gφi,θ � gφθ,i � Ciφθ � Ciθφ � Cφθiq

� 1

2
gtipgθi,φ � gφi,θ � gφθ,i � gθjC

j
iφ � gφjC

j
iθ ����

��*0
gijC

j
φθq

� ωtθφ (4.3.13)
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ωtφφ �
1

2
gtip2gφi,φ � gφφ,i � 2Ciφφ � Cφφiq

� 1

2
gtip2gφi,φ � gφφ,i � 2gφjC

j
iφ ����

�*0
gijC

j
φφ q

� 1

2

!
gttp
��

��*
0

2gφt,φ � gφφ,t � 2gφθC
θ
tφ � 2gφφC

φ
tφq � gtrp

��
��*

0
2gφr,φ � gφφ,r � 2gφθC

θ
rφ

� 2gφφC
φ
rφq
)

� ab� c2

2|g|
!
p�b,t � 2cCθ

tφ � 2bCφ
tφq �Qp�b,r � 2cCθ

rφ � 2bCφ
rφq
)

(4.3.14)

Step 5: Now plug (4.3.11), (4.3.12), (4.3.13) and (4.3.14) back into (4.3.9), we

get:

x ~HΣ, eny � �p1 �Q2q1{2 1

ab� c2
pbωtθθ � cωtθφ � cωtφθ � aωtφφq

� �p1 �Q2q1{2 1

ab� c2
pbωtθθ � 2cωtθφ � aωtφφq (By (4.3.13))

� �p1 �Q2q1{2 1

ab� c2

ab� c2

2|g|
!
p�a,tb� 2abCθ

tθ ����
�

2bcCφ
tθ � 2cc,t � 2c2Cθ

tθ ����
�

2bcCφ
tθ

�HHHH2acCθ
tφ � 2c2Cφ

tφ � ab,t �HHHH2acCθ
tφ � 2abCφ

tφq �Qp�a,rb� 2abCθ
rθ ����

�
2bcCφ

rθ

� 2cc,r � 2c2Cθ
rθ ����

�
2bcCφ

rθ �
HH

HH
2acCθ

rφ � 2c2Cφ
rφ � ab,r �HHHH2acCθ

rφ � 2abCφ
rφq
)

� �p1 �Q2q1{2
2|g|

!
� etpab� c2q � 2pab� c2qpCθ

tθ � Cφ
tφq

�Q

�
�erpab� c2q � 2pab� c2q�����

��:0
pCθ

rθ � Cφ
rφq


)

� �p1 �Q2q1{2
2|g|

!
erpab� c2qQ� etpab� c2q � 2pab� c2qpCθ

tθ � Cφ
tφq
)

(4.3.15)

since Cθ
rθ � Cφ

rφ � 0 by Equation (4.3.6). Therefore ~HΣ is parallel to er if and only if

erpab� c2qQ� etpab� c2q � 2pab� c2qpCθ
tθ � Cφ

tφq � 0. (4.3.16)

62



Notice that Equation (4.3.16) is zeroth order in Q. Since Σ is area expanding,

erpab� c2q ¡ 0, and hence we get a unique solution

Q � etpab� c2q � 2pab� c2qpCθ
tθ � Cφ

tφq
erpab� c2q . (4.3.17)

Lemma 4.10. erpab � c2q � 0 if and only if Her � �x ~HΣ, ery � 0, i.e. Σ is a

minimal surface in M , where Her is the mean curvature scalar of Σ in the direction

of er.

Proof. For the first claim, note that

erpdAΣq � erp
?
ab� c2βθβφq � 1

2
?
ab� c2

erpab�c2qβθβφ � 1

2pab� c2qerpab�c
2qdAΣ.

(4.3.18)

On the other hand by the first variation of area formula (A.3.7),

erpdAΣq � �x ~HΣ, erydAΣ � HerdAΣ. (4.3.19)

Combing the two equations we get:

2Her � pab� c2q � erpab� c2q. (4.3.20)

Therefore erpab� c2q � 0 if and only if Her � 0.

An application of Theorem 4.9 is to generate more examples of inverse mean

curvature vector flow solutions. Let pN4, gq be a spacetime and pM, gq a spacelike

hypersurface with induced metric g. Suppose tΣsu is a solution to the smooth inverse

mean curvature flow in M . Let ~Hs and dAs be the mean curvature vector field and

area form of Σs, respectively. By the first variation formula,

d

ds
pdAsq � dAs. (4.3.21)
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Theorem 4.9 allows us to steer the metric smoothly along inverse mean curvature

flow to keep ~Hs tangential to M . Note that (4.3.21) still holds after the steering since

we are not changing the metric on M . Therefore by Proposition 4.1, in the steered

metric tΣsu is a solution to smooth inverse mean curvature vector flow equation.

One could generalize this technique to study weak solutions to inverse mean

curvature vector flow equation (defined in (4.1.1)) using solutions to Huisken-Ilmanen

inverse mean curvature flow (with jumps) in a hypersurface, but we will not give a

rigorous treatment here.

4.4 Generalizations

Given a surface pΣ, gΣq inside a spacetime pN4, gq. Let ~I be the inverse mean curva-

ture vector. A more general flow than inverse mean curvature vector flow is to flow

out Σ in the following direction:

~ξ :� ~I � β~IK, (4.4.1)

where the K operation is a linear isomorphism on the normal bundle defined in

Section 3.3.1, and β is a constant on each flow surface (hence is only a function of

the flow parameter) such that �1 ¤ β ¤ 1.

Therefore inverse mean curvature vector flow corresponds to the case where β � 0.

The procedure for constructing spacetimes with inverse mean curvature vector flow

solutions can be generalized to constructing spacetimes in which this more general

flow exists. The idea is to construct a spacetime metric g that admit a coordinate

chart tt, r, θ, φu, such that conditions (4.1.6), (4.1.7), (4.1.8) and the fourth condition:

~ξ is parallel to
B
Br . (4.4.2)

are satisfied.
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5

Uniformly Area Expanding Straight Out Flows

In this chapter we study uniformly area expanding straight out flows, or simply

straight out flows of spacelike surfaces in a spacetime. Consider a spacetime pN4, gq
and a closed embedded surfaces Σ with the induced metric gΣ. A straight out direc-

tion of Σ, first studied by M. Mars, E. Malec and Simon [30], is a normal vector field

that has “minimal variations” along Σ. Such a normal vector field is a minimizer

of a natural functional defined on the normal bundle. The Hawking mass is also

monotonically non-decreasing under smooth straight out flows assuming the space-

time satisfies the dominant energy condition. A condition for a spacetime to admit

straight out flow coordinate charts is derived in this chapter. Complete understand-

ing of such spacetimes is still work in progress.

5.1 Background and Straight Out Flow Coordinate Chart

Let pN4, gq be a time-oriented spacetime and pΣ2, gΣq be a closed embedded sur-

face. The normal bundle of Σ, NΣ, has an induced metric of signature p�,�q. On

each fiber NpΣ, the nonzero vectors get partitioned into four quadrants: outward-

spacelike, inward-spacelike, future-timelike and past-timelike. Let U�NpΣq denote
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the subbundle of NΣ that consists of outward-spacelike normal vector fields of unit

length. Given a smooth section ν of U�NpΣq, its associated connection one-form αν

on Σ is defined by:

ανpXq :� x∇K
Xv, v

Kyg, @X P ΓpTΣq. (5.1.1)

where K is a fiberwise linear isomorphism defined in Section 3.3. Notice that tν, νKu
forms an orthonormal frame of NΣ.

Given another smooth section ν of U�NpΣq, there exists a constant θ ¡ 0 such

that

ν � cosh θν � sinh θνK

νK � sinh θν � cosh θνK (5.1.2)

Geometrically tν, νKu can be viewed as hyperbolic rotation of tν, νKu by angle θ.

The associated connection one-forms are related by:

Lemma 5.1 ([9]). Let αν be the associated connection one-form of ν, then αν is

related to αν by

αν � αv � dθ. (5.1.3)

Let E be an energy functional on U�NpΣq such that:

Epνq :�
»

Σ

||∇Kν||2 dAΣ, @ ν P Γ
�
U�NpΣq�. (5.1.4)

H. Bray and J. Jauregui proved the following proposition:

Proposition 5.2 ([9]). ν P ΓpNΣq, outward spacelike and is of unit length, is a

minimizer of E if and only if divΣpανq � 0.

Intuitively, a minimizer of E is a normal vector field with “minimal variations”

along Σ. Bray and Jauregui also proved the existence of such minimizers:
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Proposition 5.3 ([9]). Minimizers of E exist, and any two such minimizers differ

by a hyperbolic rotation as in (5.1.2) of a constant angle θ.

Proof. We present the proof in [9]. Fix a section ν of U�NpΣq. Given any other

section ν, ν and ν are related by a hyperbolic rotation as in (5.1.2). Let αν and αν

be the associated connection one-forms of ν and ν, respectively. By Lemma 5.1, αν

is a divergence free if and only if

0 � divΣpανq � �d�αν � �d�αν � d�dθ � divΣpανq � ∆Σθ, (5.1.5)

where d� is the L2-adjoint of d on Σ. The above equation is equivalent to:

∆Σθ � divΣpανq. (5.1.6)

This is a Poisson equation. By the divergence theorem,

»
Σ

divΣpανq dAΣ � 0. There-

fore Equation (5.1.6) has smooth solutions. Moreover, any two solutions differ by an

element in the kernel of ∆Σ, which consists of constant functions on Σ.

A minimizer of E can be viewed as a straight out direction of the surface Σ, as it

tries to level the surface as much as possible. This motivates the following definition:

Definition 5.1.1 (Uniformly Area Expanding Straight Out Flow). Given a surface

Σ in a time-oriented spacetime pN4, gq. Let ~T be a global timelike vector field. A

smooth straight out flow of Σ in N is a smooth normal variation F : Σ�r0, T s ÝÑ N

such that

B
BsF px, sq � βνspxq, divΣspανsq � 0,

»
Σs

x~T , νsy dAs � 0, (5.1.7)

where β is chosen such that d
ds
pdAsq � dAs; and s P r0, T s, Σs :� F pΣ, sq, and νs is

a outward spacelike unit normal vector field along Σs with zero divergence.
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On each surface of Σs in Definition 5.1.1, the outward-spacelike vector νs with zero

divergence is only unique up to a hyperbolic rotation with angle θ (see Proposition

5.3). The additional condition that

»
Σs

x~T , νsy dAs � 0 defines each νs uniquely. This

condition is due to J. Jauregui.

E. Malec, M. Mars and W. Simon have studied such flows in [30], and they have

shown that given a smooth solution tΣtu to the straight out flow equation (5.1.7),

d

dt
mHpΣsq ¥ 0,

i.e. that Hawking mass is also monotonically non-decreasing (also see [10]).

The goal in this chapter is to construct spacetimes that admit smooth solutions

to straight out flow equation. The idea is similar to the construction in Chapter 4.

Given U :� pR3zB1q�R, where B1 is the unit ball in R3, we seek a spacetime metric

g on U that admit a coordinate chart tt, r, θ, φu, such that g satisfies the following

four conditions:

p1q x BBr ,
B
Bθ y � 0; (5.1.8)

p2q x BBr ,
B
Bφy � 0; (5.1.9)

p3q Area form of coordinate sphere St,r satisfies dAt,r � r2 sin θdθdφ; (5.1.10)

p4q er :� 1

u

B
Br is straight out, i.e. divgSαer � 0; (5.1.11)

where αer is the connection one-form associated with er.

The following definition is analogous to Definition 4.1.2:

Definition 5.1.2 (Straight Out Flow Coordinate Chart). If a spacetime pN4, gq
admits a coordinate chart tt, r, θ, φu such that the four conditions (5.1.8), (5.1.9),
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(5.1.10) and (5.1.11) are satisfied, then tt, r, θ, φu is called a straight out coordinate

chart, and N is called a spacetime that admits a straight out coordinate chart.

5.2 Construction of Spacetimes That Admit Uniformly Area Expand-
ing Straight Out Flow Coordinate Charts (work in progress)

Let U � pR3zB1q�R. Given a coordinate chart tt, r, θ, φu, define a spacetime metric

g to be

g :�

���������

t r θ φ

t �v2 d e f

r d u2 0 0

θ e 0 a c

φ f 0 c b

��������

(5.2.1)

for smooth functions a, b, c, d, e, f, u, v on U . g satisfies conditions (5.1.8) and (5.1.9).

Choosing two of the three variables a, b and c such that ab � c2 � r4 sin2 θ satisfies

condition (5.1.10). We show that the fourth condition (5.1.11) is a second order

elliptic PDE in the metric component d.

The normal bundle of the coordinate sphere St,r has an orthonormal frame

ter, enu, where er � 1
u
B
Br

, and en � n
||n||g

. The normal vector n is the same as in

Equation (4.2.7). We compute the condition on g such that er is straight out on

each St,r.

Notation: For the rest of this chapter, the induced metric on St,r is denoted as

gS; ∇ is the Levi-Civita connection with respect to g; |g| and |gS| are determinants

of g and gS respectively; and the subscript er is omitted from αer whenever there is

no confusion.
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5.2.1 Computation of The Connection One Form and Its Divergence

In terms of the frame tdθ, dφu for T �St,r, write α � αθdθ � αφdφ, where

αθ : � α

� B
Bθ


� x∇K

B
Bθ
er, e

K
r y (By definition 5.1.1)

� x∇K
B
Bθ
er, eny �

B
∇K

B
Bθ

�
1

u

B
Br


,

n

||n||
F

�
B
p1{uq,θ BBr �

1

u
∇K

B
Bθ

B
Br ,

n

|n|
F

� 1

u||n||
B
∇K

B
Bθ

B
Br ,n

F
� 1

u||n||
B
∇ B

Bθ

B
Br ,n

F
(n is normal)

� 1

u||n||Γ
t

θr

B B
Bt ,n

F
(n is perpendicular to B

Br
, B
Bθ
, B
Bφ

)

� 1

u||n||Γ
t

θr �
|g|

u2|gS| (By (4.2.8))

� 1

u

�
u2|gS|
�|g|


1{2

Γ
t

θr �
|g|

u2|gS| (By (4.2.9))

� � 1

u2
Γ
t

θr

��|g|
|gS|


1{2

(|g| � �p|g|2q1{2, since |g|   0)

Therefore

αθ � � 1

u2
Γ
t

θr

��|g|
|gS|


1{2

. (5.2.2)

By a similar computation, we have:

αφ :� α

� B
Bφ


� � 1

u2
Γ
t

φr

��|g|
|gS|


1{2

. (5.2.3)

Therefore:

α � � 1

u2
Γ
t

θr

��|g|
|gS|


1{2

� dθ � 1

u2
Γ
t

φr

��|g|
|gS|


1{2

� dφ. (5.2.4)
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The divergence of α is defined to be the divergence of its dual vector field, which

is β � βθ B
Bθ
� βφ B

Bφ
, where

βθ � gθθS αθ � gθφS αφ, βφ � gφθS αθ � gφφS αφ (5.2.5)

Recall that

Definition 5.2.1. For a vector field X � °n
i�1X

i B
Bxi

in local coordinates, its diver-

gence with respect to a metric g is given by:

divgX :� 1a|g|
ņ

i�1

B
Bxi

�
X i
a
|g|
	
.

Therefore the divergence of α along St,r is

divgSα : � divgSβ �
1a|gS|

2̧

i�1

B
Bxi

�
βi
a
|gS|

	
( B
Bxi

P t B
Bθ
, B
Bφ
u)

� 1a|gS|

� B
Bθ
�
βθ
a
|gS|

	
� B
Bφ
�
βφ
a
|gS|

	�

� 1

r2 sin θ

� B
Bθ
�
βθr2 sin θ

�� B
Bφ
�
βφr2 sin θ

��

� 1

r2 sin θ

�
βθ,θ � r2 sin θ � βθ � r2 cos θ � βφ,φ � r2 sin θ � 0

	
that is:

divgSα � βθ,θ � βφ,φ � βθ cot θ. (5.2.6)

5.2.2 Straight Out Flow Coordinate Chart: Big Picture

We expand out Equation (5.2.6), separating higher order derivatives from lower order

derivatives.
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divgSα � βθ,θ � βφ,φ � βθ cot θ

� pgθθS αθ � gθφS αφq,θ � pgφθS αθ � gφφS αφq,φ � pgθθS αθ � gθφS αφq cot θ

� pgθθS αθ,θ � gθφS αφ,θ � gφθS αθ,φ � gφφS αφ,φq (2nd derivative in g)

� pgθθS,θαθ � gθφS,θαφ � gφθS,φαθ � gφφS,φαφq � pgθθS αθ � gθφS αφq cot θ

(1st derivative in g)

�: pBq � pl1q (5.2.7)

From (5.2.2) and (5.2.3), αθ and αφ are first order in the derivative of the space-

time metric g. Therefore the divergence equation (5.2.6) is second order in the

derivative of g. In (5.2.7) above, pBq denotes the second derivative terms, and pl1q
denotes the first derivative terms.

To compute pBq, notice that:

gθθS αθ,θ � gθθS

�
� 1

u2
Γ
t

θr

��|g|
|gS|


1{2
�
,θ

(plug in (5.2.2) for αθ)

� gθθS

��
� 1

u2



,θ

Γ
t

θr

��|g|
|gS|


1{2

�
�
� 1

u2



Γ
t

θr,θ

��|g|
|gS|


1{2

�
�
� 1

u2



Γ
t

θr

��|g|
|gS|


1{2

,θ

�

�: � 1

u2

��|g|
|gS|


1{2

gθθS � Γ
t

θr,θ � lower order derivatives in g.

Similarly for the other three terms in pBq, the highest order derivative terms are

the terms containing derivatives of the Christoffel symbols. Therefore

pBq � pCq � pl2q, (5.2.8)
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where

pCq :� � 1

u2

��|g|
|gS|


1{2 �
gθθS Γ

t

θr,θ � gθφS Γ
t

φr,θ � gφθS Γ
t

θr,φ � gφφS Γ
t

φr,φ

	

� � 1

u2

��|g|
|gS|


1{2

� 1

|gS|
�
bΓ

t

θr,θ � cΓ
t

φr,θ � cΓ
t

θr,φ � aΓ
t

φr,φ

	

� � 1

u2

p�|g|q1{2
|gS|3{2 �

�
bΓ

t

θr,θ � cΓ
t

φr,θ � cΓ
t

θr,φ � aΓ
t

φr,φ

	

�: � 1

u2

p�|g|q1{2
|gS|3{2 � pDq (5.2.9)

and

pl2q :� gθθS

��
� 1

u2



,θ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,θ

�
Γ
t

θr

� gθφS

��
� 1

u2



,θ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,θ

�
Γ
t

φr

� gφθS

��
� 1

u2



,φ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,φ

�
Γ
t

θr

� gφφS

��
� 1

u2



,φ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,φ

�
Γ
t

φr

�
��

� 1

u2



,θ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,θ

�
� pgθθS Γ

t

θr � gθφS Γ
t

φrq

�
��

� 1

u2



,φ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,φ

�
� pgφθS Γ

t

θr � gφφS Γ
t

φrq (5.2.10)

Notice that all the second derivatives of g in the divergence equation (5.2.7) lie
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in pDq. Note that:

Γ
t

θr �
1

2

�
gttpgθt,r � grt,θ � gθr,tq � gtrpgθr,r � grr,θ � gθr,rq � gtθpgθθ,r � grθ,θ � gθr,θq

� gtφpgθφ,r � grφ,θ � gθr,φq
	

� 1

2

�
gttpgθt,r � grt,θq � gtrgrr,θ � gtθgθθ,r � gtφgθφ,r

	
� 1

2|g|
�
u2pab� c2qpe,r � d,θq � dpab� c2q2uu,θ � u2pcf � beqa,r � u2pce� afqc,r

	

Γ
t

φr �
1

2

�
gttpgφt,r � grt,φ � gφr,tq � gtrpgφr,r � grr,φ � gφr,rq � gtθpgφθ,r � grθ,φ � gφr,θq

� gtφpgφφ,r � grφ,φ � gφr,φq
	

� 1

2

�
gttpgφt,r � grt,φq � gtrgrr,φ � gtθgφθ,r � gtφgφφ,r

	
� 1

2|g|
�
u2pab� c2qpf,r � d,φq � dpab� c2q2uu,φ � u2pcf � beqc,r � u2pce� afqb,r

	
We compute pDq as follows:

pDq � b

2
rgttpgθt,r � grt,θq � gtrgrr,θ � gtθgθθ,r � gtφgθφ,rs,θ

� c

2
rgttpgφt,r � grt,φq � gtrgrr,φ � gtθgφθ,r � gtφgφφ,rs,θ

� c

2
rgttpgθt,r � grt,θq � gtrgrr,θ � gtθgθθ,r � gtφgθφ,rs,φ

� a

2
rgttpgφt,r � grt,φq � gtrgrr,φ � gtθgφθ,r � gtφgφφ,rs,φ

� 1

2
gttpbgθt,rθ � bgrt,θθ � cgφt,rθ � cgrt,φθ � cgθt,rφ � cgrt,θφ � agφt,rφ � agrt,φφq

� 1

2
gtrpbgrr,θθ � cgrr,φθ � cgrr,θφ � agrr,φφq �

1

2
gtθpbgθθ,rθ � cgφθ,rθ � cgθθ,rφ

� agφθ,rφq �
1

2
gtφpbgθφ,rθ � cgφφ,rθ � cgθφ,rφ � agφφ,rφq � pEq

�: pIq � pIIq � pIIIq � pIV q � pEq (5.2.11)
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where pEq consists of lower (first) order derivatives in g:

pEq � b

2
rgtt,θ � pgθt,r � grt,θq � gtr,θ � grr,θ � gtθ,θ � gθθ,r � gtφ,θ � gθφ,rs

� c

2
rgtt,θ � pgφt,r � grt,φq � gtr,θ � grr,φ � gtθ,θ � gφθ,r � gtφ,θ � gφφ,rs

� c

2
rgtt,φ � pgθt,r � grt,θq � gtr,φ � grr,θ � gtθ,φ � gθθ,r � gtφ,φ � gθφ,rs

� a

2
rgtt,φ � pgφt,r � grt,φq � gtr,φ � grr,φ � gtθ,φ � gφθ,r � gtφ,φ � gφφ,rs

� 1

2
gtt,θpbe,r � bd,θ � cf,r � cd,φq � 1

2
gtt,φp�ce,r � cd,θ � af,r � ad,φq

� 1

2
gtr,θp2buu,θ � 2cuu,φq � 1

2
gtr,φp�2cuu,θ � 2auu,φq � 1

2
gtθ,θ pba,r � cc,rq

� 1

2
gtθ,φp�ca,r � ac,rq � 1

2
gtφ,θ pbc,r � cb,rq � 1

2
gtφ,φp�cc,r � ab,rq (see (5.2.11))

Therefore the fourth condition (5.1.11) becomes:

0 � divgSα
ν � βθ,θ � βφ,φ � βθ cot θ � pBq � pl1q (see (5.2.7))

� pCq � pl2q � pl1q (see (5.2.8))

� � 1

u2

p�|g|q1{2
|gS|3{2 � pDq � pl2q � pl1q (see (5.2.9))

� � 1

u2

p�|g|q1{2
|gS|3{2 �

�
pIq � pIIq � pIIIq � pIV q � pEq

	
� pl2q � pl1q

(5.2.12)

The highest derivatives of g (second derivatives) lie in pIq � pIIq � pIIIq � pIV q.

5.2.3 Straight Out Flow Coordinate Chart: Complete Form

In this subsection, (5.2.12) is computed explicitly from left to right.
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(I):

pIq � u2pab� c2q
2|g| pbe,rθ � bd,θθ � cf,rθ � cd,φθ � ce,rφ � cd,θφ � af,rφ � ad,φφq

� u2

2

|gS|
|g| pbd,θθ � 2cd,θφ � ad,φφ � be,rθ � cf,rθ � ce,rφ � af,rφq. (5.2.13)

Therefore

� 1

u2

p�|g|q1{2
|gS|3{2 � pIq � � 1

��u
2

p�|g|q1{2
|gS|3{2 � ��u

2

2

|gS|
|g| �

pbd,θθ � 2cd,θφ � ad,φφ � be,rθ � cf,rθ � ce,rφ � af,rφq

� 1

2

� �1

|gS||g|

1{2 �

pbd,θθ � 2cd,θφ � ad,φφq � pbe,rθ � cf,rθ � ce,rφ � af,rφq
	
.

(5.2.14)

(II) :

pIIq � �dpab� c2q
2|g| pbpu2q,θθ � 2cpu2q,θφ � apu2q,φφq

� �d|gS|
2|g| pbpu2q,θθ � 2cpu2q,θφ � apu2q,φφq. (5.2.15)

Therefore

� 1

u2

p�|g|q1{2
|gS|3{2 � pIIq � � 1

u2

p�|g|q1{2
|gS|3{2 � �d|gS|

2|g| pbpu2q,θθ � 2cpu2q,θφ � apu2q,φφq

� �1

2

� �1

|gS||g|

1{2

d

u2
pbpu2q,θθ � 2cpu2q,θφ � apu2q,φφq. (5.2.16)

pIIIq:

pIIIq � u2pcf � beq
2|g| pba,rθ � cc,rθ � ca,rφ � ac,rφq. (5.2.17)
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Therefore

� 1

u2

p�|g|q1{2
|gS|3{2 � pIIIq � � 1

��u
2

p�|g|q1{2
|gS|3{2 � ��u

2 pcf � beq
2|g| pba,rθ � cc,rθ � ca,rφ � ac,rφq

� cf � be

2

1

|gS|3{2
1

p�|g|q1{2 pba,rθ � cc,rθ � ca,rφ � ac,rφq

� 1

2

� �1

|gS||g|

1{2

cf � be

ab� c2
pba,rθ � cc,rθ � ca,rφ � ac,rφq.

(5.2.18)

pIV q:

pIV q � u2pce� afq
2|g| pbc,rθ � cb,rθ � cc,rφ � ab,rφq. (5.2.19)

Therefore

� 1

u2

p�|g|q1{2
|gS|3{2 � pIV q � � 1

u2

p�|g|q1{2
|gS|3{2 � u

2pce� afq
2|g| pbc,rθ � cb,rθ � cc,rφ � ab,rφq

� ce� af

2

1

|gS|3{2
1

p�|g|q1{2 pbc,rθ � cb,rθ � cc,rφ � ab,rφq

� 1

2

� �1

|gS||g|

1{2

ce� af

ab� c2
pbc,rθ � cb,rθ � cc,rφ � ab,rφq. (5.2.20)

We now compute pEq. First we compute the derivative of the inverse metric:

(1)

gtt,θ �
�
u2|gS|
|g|



,θ

� p2uu,θ|gS| � u2|gS|,θq|g| � u2|gS||g|,θ
|g|2

� 2uu,θ|gS| � 2u2|gS| cot θ

|g| � u2|gS||g|,θ
|g|2 (By (A.2.17))

� u2|gS|
|g|

�
2
u,θ
u
� 2 cot θ � |g|,θ

|g|


.
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Similarly

gtt,φ �
�
u2|gS|
|g|



,φ

� p2uu,φ|gS| � u2
��

��* 0|gS|,φ q|g| � u2|gS||g|,φ
|g|2 (|gS| � r4 sin2 θ)

� 2uu,φ|gS|
|g| � u2|gS||g|,φ

|g|2

� u2|gS|
|g|

�
2
u,φ
u

� |g|,φ
|g|



.

(2)

gtr,θ �
��d|gS|

|g|


,θ

� p�d,θ|gS| � d|gS|,θq|g| � p�d|gS|q|g|,θ
|g|2

� �d,θ|gS| � 2d|gS| cot θ

|g| � d|gS||g|,θ
|g|2 (By (A.2.17))

� �d|gS|
|g|

�
d,θ
d
� 2 cot θ � |g|,θ

|g|


.

Similarly

gtr,φ �
��d|gS|

|g|


,φ

� p�d,φ|gS| � d��
��* 0|gS|,φ q|g| � p�d|gS|q|g|,φ
|g|2

� �d,φ|gS|
|g| � d|gS||g|,φ

|g|2

� �d|gS|
|g|

�
d,φ
d
� |g|,φ

|g|


.

(3)

gtθ,θ �
�
u2pcf � beq

|g|


,θ

�
�
2uu,θpcf � beq � u2pcf � beq,θ

�|g| � u2pcf � beq|g|,θ
|g|2

� 2uu,θpcf � beq � u2pcf � beq,θ
|g| � u2pcf � beq|g|,θ

|g|2

� u2pcf � beq
|g|

�
2
u,θ
u
� pcf � beq,θ

cf � be
� |g|,θ

|g|


.
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Similarly

gtθ,φ �
�
u2pcf � beq

|g|


,φ

�
�
2uu,φpcf � beq � u2pcf � beq,φ

�|g| � u2pcf � beq|g|,φ
|g|2

� 2uu,φpcf � beq � u2pcf � beq,φ
|g| � u2pcf � beq|g|,φ

|g|2

� u2pcf � beq
|g|

�
2
u,φ
u

� pcf � beq,φ
cf � be

� |g|,φ
|g|



.

(4)

gtφ,θ �
�
u2pce� afq

|g|


,θ

�
�
2uu,θpce� afq � u2pce� afq,θ

�|g| � u2pce� afq|g|,θ
|g|2

� 2uu,θpce� afq � u2pce� afq,θ
|g| � u2pce� afq|g|,θ

|g|2

� u2pce� afq
|g|

�
2
u,θ
u
� pce� afq,θ

ce� af
� |g|,θ

|g|


.

Similarly

gtφ,φ �
�
u2pce� afq

|g|


,φ

�
�
2uu,φpce� afq � u2pce� afq,φ

�|g| � u2pce� afq|g|,φ
|g|2

� 2uu,φpce� afq � u2pce� afq,φ
|g| � u2pce� afq|g|,φ

|g|2

� u2pce� afq
|g|

�
2
u,φ
u

� pce� afq,φ
ce� af

� |g|,φ
|g|



.
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Therefore

pEq � 1

2

u2|gS|
|g|

�
2
u,θ
u
� 2 cot θ � |g|,θ

|g|


pbe,r � bd,θ � cf,r � cd,φq

� 1

2

u2|gS|
|g|

�
2
u,φ
u

� |g|,φ
|g|



p�ce,r � cd,θ � af,r � ad,φq

� �du|gS|
|g|

�
d,θ
d
� 2 cot θ � |g|,θ

|g|


pbu,θ � cu,φq � �du|gS|

|g|
�
d,φ
d
� |g|,φ

|g|


p�cu,θ

� au,φq � 1

2

u2pcf � beq
|g|

�
2
u,θ
u
� pcf � beq,θ

cf � be
� |g|,θ

|g|


pba,r � cc,rq

� 1

2

u2pcf � beq
|g|

�
2
u,φ
u

� pcf � beq,φ
cf � be

� |g|,φ
|g|



p�ca,r � ac,rq

� 1

2

u2pce� afq
|g|

�
2
u,θ
u
� pce� afq,θ

ce� af
� |g|,θ

|g|


pbc,r � cb,rq

� 1

2

u2pce� afq
|g|

�
2
u,φ
u

� pce� afq,φ
ce� af

� |g|,φ
|g|



p�cc,r � ab,rq.

Therefore

� 1

u2

p�|g|q1{2
|gS|3{2 pEq � 1

2

� �1

|gS||g|

1{2 ��

2
u,θ
u
� 2 cot θ � |g|,θ

|g|


pbe,r � bd,θ � cf,r � cd,φq

�
�

2
u,φ
u

� |g|,φ
|g|



p�ce,r � cd,θ � af,r � ad,φq

�

�
� �1

|gS||g|

1{2

d

u

��
d,θ
d
� 2 cot θ � |g|,θ

|g|


pbu,θ � cu,φq �

�
d,φ
d
� |g|,φ

|g|


p�cu,θ � au,φq

�

� 1

2

� �1

|gS||g|

1{2

cf � be

ab� c2

��
2
u,θ
u
� pcf � beq,θ

cf � be
� |g|,θ

|g|


pba,r � cc,rq

�
�

2
u,φ
u

� pcf � beq,φ
cf � be

� |g|,φ
|g|



p�ca,r � ac,rq

�

� 1

2

� �1

|gS||g|

1{2

ce� af

ab� c2

��
2
u,θ
u
� pce� afq,θ

ce� af
� |g|,θ

|g|


pbc,r � cb,rq

�
�

2
u,φ
u

� pce� afq,φ
ce� af

� |g|,φ
|g|



p�cc,r � ab,rq

�
.
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That is:

� 1

u2

p�|g|q1{2
|gS|3{2 pEq � 1

2

� �1

|gS||g|

1{2 "�

2
u,θ
u
� 2 cot θ � |g|,θ

|g|


pbe,r � bd,θ � cf,r � cd,φq

�
�

2
u,φ
u

� |g|,φ
|g|



p�ce,r � cd,θ � af,r � ad,φq � 2d

u

��
d,θ
d
� 2 cot θ � |g|,θ

|g|


pbu,θ � cu,φq

�
�
d,φ
d
� |g|,φ

|g|


p�cu,θ � au,φq

�
� cf � be

ab� c2

��
2
u,θ
u
� pcf � beq,θ

cf � be
� |g|,θ

|g|


pba,r � cc,rq

�
�

2
u,φ
u

� pcf � beq,φ
cf � be

� |g|,φ
|g|



p�ca,r � ac,rq

�
� ce� af

ab� c2

��
2
u,θ
u
� pce� afq,θ

ce� af
� |g|,θ

|g|


�

pbc,r � cb,rq �
�

2
u,φ
u

� pce� afq,φ
ce� af

� |g|,φ
|g|



p�cc,r � ab,rq

�*
. (5.2.21)

Next we compute pl2q. To do that, we first have�
� 1

u2



,θ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,θ

� 2

u3
u,θ

��|g|
|gS|


1{2

� 1

u2

1

2

��|g|
|gS|


�1{2��|g|,θ|gS| � |g||gS|,θ
|gS|2




� 2

u3
u,θ

��|g|
|gS|


1{2

� 1

2u2

� |gS|
�|g|


1{2��|g|,θ
|gS| � 2|g||gS| cot θ

|gS|2



(By (A.2.17))

� 2

u3
u,θ

��|g|
|gS|


1{2

� 1

2u2

� �1

|gS||g|

1{2

p�|g|,θ � 2|g| cot θq

� 1

u2

��|g|
|gS|


1{2�
2u,θ
u

� 1

2

��1

|g|


p�|g|,θ � 2|g| cot θq




� 1

u2

��|g|
|gS|


1{2�
2u,θ
u

� cot θ � |g|,θ
2|g|



.

81



Similarly we have:�
� 1

u2



,φ

��|g|
|gS|


1{2

�
�
� 1

u2


��|g|
|gS|


1{2

,φ

� 2

u3
u,φ

��|g|
|gS|


1{2

� 1

u2

1

2

��|g|
|gS|


�1{2
���|g|,φ|gS| � |g|���

�* 0|gS|,φ
|gS|2

�

� 2

u3
u,φ

��|g|
|gS|


1{2

� 1

2u2

��|gS|
|g|


1{2��|g|,φ
|gS|




� 2

u3
u,φ

��|g|
|gS|


1{2

� 1

2u2

� �1

|gS||g|

1{2

p�|g|,φq

� 1

u2

��|g|
|gS|


1{2�
2u,φ
u

� 1

2

��1

|g|


p�|g|,φq




� 1

u2

��|g|
|gS|


1{2�
2u,φ
u

� |g|,φ
2|g|



.

Then we need to compute:

gθθS Γ
t

θr � gθφS Γ
t

φr �
1

|gS| pbΓ
t

θr � cΓ
t

φrq

� 1

2

1

|gS||g|
�
b
�
u2pab� c2qpe,r � d,θq � dpab� c2q2uu,θ � u2pcf � beqa,r � u2pce� afqc,r

�
� c

�
u2pab� c2qpf,r � d,φq � dpab� c2q2uu,φ � u2pcf � beqc,r � u2pce� afqb,r

�	
� 1

2

1

|gS||g|
�
u2|gS|pbe,r � bd,θ � cf,r � cd,φq � d|gS|p2buu,θ � 2cuu,φq

� u2pcf � beqpba,r � cc,rq � u2pce� afqpbc,r � cb,rq
	

� u2

2

1

|g|
�
pbe,r � bd,θ � cf,r � cd,φq � 2d

u
pbu,θ � cu,φq � cf � be

ab� c2
pba,r � cc,rq

� ce� af

ab� c2
pbc,r � cb,rq

	
.
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Similarly:

gφθS Γ
t

θr � gφφS Γ
t

φr �
1

|gS| p�cΓ
t

θr � aΓ
t

φrq

� 1

2

1

|gS||g|
�
� c

�
u2pab� c2qpe,r � d,θq � dpab� c2q2uu,θ � u2pcf � beqa,r � u2pce� afq

� c,r
�� a

�
u2pab� c2qpf,r � d,φq � dpab� c2q2uu,φ � u2pcf � beqc,r � u2pce� afqb,r

�	
� 1

2

1

|gS||g|
�
u2|gS|p�ce,r � cd,θ � af,r � ad,φq � d|gS|p�2cuu,θ � 2auu,φq

� u2pcf � beqp�ca,r � ac,rq � u2pce� afqp�cc,r � ab,rq
	

� u2

2

1

|g|
�
p�ce,r � cd,θ � af,r � ad,φq � 2d

u
p�cu,θ � au,φq � cf � be

ab� c2
p�ca,r � ac,rq

� ce� af

ab� c2
p�cc,r � ab,rq

	
.

Putting them all together, we get:

pl2q � 1

��u
2

��|g|
|gS|


1{2�
2u,θ
u

� cot θ � |g|,θ
2|g|



� ��u

2

2

1

|g|
�
pbe,r � bd,θ � cf,r � cd,φq

� 2d

u
pbu,θ � cu,φq � cf � be

ab� c2
pba,r � cc,rq � ce� af

ab� c2
pbc,r � cb,rq

	

� 1

@@u
2

��|g|
|gS|


1{2�
2u,φ
u

� |g|,φ
2|g|



� @@u

2

2

1

|g|
�
p�ce,r � cd,θ � af,r � ad,φq

� 2d

u
p�cu,θ � au,φq � cf � be

ab� c2
p�ca,r � ac,rq � ce� af

ab� c2
p�cc,r � ab,rq

	
.
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Simplifying pl2q, we get:

pl2q � �1

2

� �1

|gS||g|

1{2 "�

2u,θ
u

� cot θ � |g|,θ
2|g|



�
�
pbe,r � bd,θ � cf,r � cd,φq

� 2d

u
pbu,θ � cu,φq � cf � be

ab� c2
pba,r � cc,rq � ce� af

ab� c2
pbc,r � cb,rq

	
�
�

2u,φ
u

� |g|,φ
2|g|



�
�
p�ce,r � cd,θ � af,r � ad,φq � 2d

u
p�cu,θ � au,φq

� cf � be

ab� c2
p�ca,r � ac,rq � ce� af

ab� c2
p�cc,r � ab,rq

	*
. (5.2.22)

Next we compute pl1q:

pl1q � pgθθS,θαθ � gθφS,θαφ � gφθS,φαθ � gφφS,φαφq � pgθθS αθ � gθφS αφq cot θ

� pgθθS,θ � gφθS,φ � gθθS cot θqαθ � pgθφS,θ � gφφS,φ � gθφS cot θqαφ

� � 1

u2

��|g|
|gS|


1{2

pgθθS,θ � gφθS,φ � gθθS cot θqΓtθr

�
�
� 1

u2


��|g|
|gS|


1{2

pgθφS,θ � gφφS,φ � gθφS cot θqΓtφr

� � 1

u2

��|g|
|gS|


1{2 �
pgθθS,θ � gφθS,φ � gθθS cot θqΓtθr � pgθφS,θ � gφφS,φ � gθφS cot θqΓtφr

	

�: � 1

u2

��|g|
|gS|


1{2 �
pl1aq � pl1bq

	
,

where pl1aq :� pgθθS,θ � gφθS,φ� gθθS cot θqΓtθr, and pl1bq :� pgθφS,θ � gφφS,φ� gθφS cot θqΓtφr.
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Note that

pl1aq � pgθθS,θ � gφθS,φ � gθθS cot θq 1

2|g|
�
u2pab� c2qpe,r � d,θq � dpab� c2q2uu,θ

� u2pcf � beqa,r � u2pce� afqc,r
	

� u2

2

|gS|
|g| pg

θθ
S,θ � gφθS,φ � gθθS cot θqd,θ � 1

2|g|
�
u2|gS|pgθθS,θ � gφθS,φ � gθθS cot θqe,r

� 2d|gS|uu,θpgθθS,θ � gφθS,φ � gθθS cot θq � u2pcf � beqpgθθS,θ � gφθS,φ � gθθS cot θqa,r

� u2pce� afqpgθθS,θ � gφθS,φ � gθθS cot θqc,r
	
.

Similarly:

pl1bq � pgθφS,θ � gφφS,φ � gθφS cot θq 1

2|g|
�
u2pab� c2qpf,r � d,φq � dpab� c2q2uu,φ

� u2pcf � beqc,r � u2pce� afqb,r
	

� u2

2

|gS|
|g| pg

θφ
S,θ � gφφS,φ � gθφS cot θqd,φ � 1

2|g|
�
u2|gS|pgθφS,θ � gφφS,φ � gθφS cot θqf,r

� 2d|gS|uu,φpgθφS,θ � gφφS,φ � gθφS cot θq � u2pcf � beqpgθφS,θ � gφφS,φ � gθφS cot θqc,r

� u2pce� afqpgθφS,θ � gφφS,φ � gθφS cot θqb,r
	
.
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Plug them back into pl1q, we get:

pl1q � � 1

u2

��|g|
|gS|


1{2
u2

2

|gS|
|g|

�
pgθθS,θ � gφθS,φ � gθθS cot θqd,θ

� pgθφS,θ � gφφS,φ � gθφS cot θqd,φ
	

�
�
� 1

u2


��|g|
|gS|


1{2 "
u2

2

|gS|
|g|

�
pgθθS,θ � gφθS,φ � gθθS cot θqe,r

� pgθφS,θ � gφφS,φ � gθφS cot θqf,r
	

� p�2duq
2

|gS|
|g|

�
pgθθS,θ � gφθS,φ � gθθS cot θqu,θ � pgθφS,θ � gφφS,φ � gθφS cot θqu,φ

	
� u2pcf � beq

2|g|
�
pgθθS,θ � gφθS,φ � gθθS cot θqa,r � pgθφS,θ � gφφS,φ � gθφS cot θqc,r

	
� u2pce� afq

2|g|
�
pgθθS,θ � gφθS,φ � gθθS cot θqc,r � pgθφS,θ � gφφS,φ � gθφS cot θqb,r

	*
. (5.2.23)

And

p5.2.23q � 1

2

� |gS|
�|g|


1{2 �
pgθθS,θ � gφθS,φ � gθθS cot θqd,θ � pgθφS,θ � gφφS,φ � gθφS cot θqd,φ

	

� 1

2

� |gS|
�|g|


1{2 "�
pgθθS,θ � gφθS,φ � gθθS cot θqe,r � pgθφS,θ � gφφS,φ � gθφS cot θqf,r

	
� 2d

u

�
pgθθS,θ � gφθS,φ � gθθS cot θqu,θ � pgθφS,θ � gφφS,φ � gθφS cot θqu,φ

	
� cf � be

ab� c2

�
pgθθS,θ � gφθS,φ � gθθS cot θqa,r � pgθφS,θ � gφφS,φ � gθφS cot θqc,r

	
� ce� af

ab� c2

�
pgθθS,θ � gφθS,φ � gθθS cot θqc,r � pgθφS,θ � gφφS,φ � gθφS cot θqb,r

	*
.

It can be computed that

gθθS,θ � gφθS,φ � gθθS cot θ � 1

|gS| pb,θ � b cot θ � c,φq;
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and

gθφS,θ � gφφS,φ � gθφS cot θ � 1

|gS| p�c,θ � c cot θ � a,φq.

Using the above, we can simplify pl1q as follows:

pl1q � 1

2

� �1

|gS||g|

1{2 �

pb,θ � b cot θ � c,φqd,θ � p�c,θ � c cot θ � a,φqd,φq
	

� 1

2

� �1

|gS||g|

1{2 �

pb,θ � b cot θ � c,φq
�
e,r � 2

u,θ
u
d� cf � be

ab� c2
a,r � ce� af

ab� c2
c,r




�p�c,θ � c cot θ � a,φq
�
f,r � 2

u,φ
u
d� cf � be

ab� c2
c,r � ce� af

ab� c2
b,r


�
. (5.2.24)

Plug (5.2.14), (5.2.16), (5.2.18), (5.2.20), (5.2.21), (5.2.22) and (5.2.24) back into

the divergence free equation (5.2.12), we get:
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2p�|gS||g|q1{2 � divgSα
ν � �2p�|gS||g|q1{2 1

u2

p�|g|q1{2
|gS|3{2 �

�
pIq � pIIq � pIIIq � pIV q

� pEq
	
� pl2q � pl1q (By (5.2.12))

� pbd,θθ � 2cd,θφ � ad,φφq � pbe,rθ � cf,rθ � ce,rφ � af,rφq � d

u2
pbpu2q,θθ � 2cpu2q,θφ

� apu2q,φφq � cf � be

ab� c2
pba,rθ � cc,rθ � ca,rφ � ac,rφq � ce� af

ab� c2
pbc,rθ � cb,rθ � cc,rφ � ab,rφq

�
�

2
u,θ
u
� 2 cot θ � |g|,θ

|g|


pbe,r � bd,θ � cf,r � cd,φq

�
�

2
u,φ
u

� |g|,φ
|g|



p�ce,r � cd,θ � af,r � ad,φq � 2d

u

��
d,θ
d
� 2 cot θ � |g|,θ

|g|


pbu,θ � cu,φq

�
�
d,φ
d
� |g|,φ

|g|


p�cu,θ � au,φq

�
� cf � be

ab� c2

��
2
u,θ
u
� pcf � beq,θ

cf � be
� |g|,θ

|g|


pba,r � cc,rq

�
�

2
u,φ
u

� pcf � beq,φ
cf � be

� |g|,φ
|g|



p�ca,r � ac,rq

�
� ce� af

ab� c2

��
2
u,θ
u
� pce� afq,θ

ce� af
� |g|,θ

|g|


�

pbc,r � cb,rq �
�

2
u,φ
u

� pce� afq,φ
ce� af

� |g|,φ
|g|



p�cc,r � ab,rq

�

�
�

2u,θ
u

� cot θ � |g|,θ
2|g|



�
�
pbe,r � bd,θ � cf,r � cd,φq � 2d

u
pbu,θ � cu,φq

� cf � be

ab� c2
pba,r � cc,rq � ce� af

ab� c2
pbc,r � cb,rq

	
�
�

2u,φ
u

� |g|,φ
2|g|



�
�
p�ce,r � cd,θ

� af,r � ad,φq � 2d

u
p�cu,θ � au,φq � cf � be

ab� c2
p�ca,r � ac,rq � ce� af

ab� c2
p�cc,r � ab,rq

	
� pb,θ � b cot θ � c,φqd,θ � p�c,θ � c cot θ � a,φqd,φq

� pb,θ � b cot θ � c,φq
�
e,r � 2

u,θ
u
d� cf � be

ab� c2
a,r � ce� af

ab� c2
c,r




� p�c,θ � c cot θ � a,φq
�
f,r � 2

u,φ
u
d� cf � be

ab� c2
c,r � ce� af

ab� c2
b,r



. (5.2.25)
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Notice that the terms underlined, up to a |gS| factor, equal the Laplacian of d

along St,r (see equation (A.2.16) in Appendix A.2.3). We can simplify (5.2.25) as:

p5.2.25q � |gS|∆gSd� pbe,rθ � cf,rθ � ce,rφ � af,rφq

� d

u2
pbpu2q,θθ � 2cpu2q,θφ � apu2q,φφq � cf � be

ab� c2
pba,rθ � cc,rθ � ca,rφ � ac,rφq

� ce� af

ab� c2
pbc,rθ � cb,rθ � cc,rφ � ab,rφq �

�
cot θ � |g|,θ

2|g|


pbe,r � bd,θ � cf,r � cd,φq

� |g|,φ
2|g| p�ce,r � cd,θ � af,r � ad,φq

� 2d

u

��
d,θ
d
� 2u,θ

u
� cot θ � |g|,θ

2|g|


pbu,θ � cu,φq �

�
d,φ
d
� 2u,φ

u
� |g|,φ

2|g|


p�cu,θ � au,φq

�

� cf � be

ab� c2

��pcf � beq,θ
cf � be

� |g|,θ
2|g| � cot θ



pba,r � cc,rq

�
�pcf � beq,φ

cf � be
� |g|,φ

2|g|


p�ca,r � ac,rq

�

� ce� af

ab� c2

��pce� afq,θ
ce� af

� |g|,θ
2|g| � cot θ



pbc,r � cb,rq

�
�pce� afq,φ

ce� af
� |g|,φ

2|g|


p�cc,r � ab,rq

�

� pb,θ � b cot θ � c,φq
�
e,r � 2d

u
u,θ � cf � be

ab� c2
a,r � ce� af

ab� c2
c,r




� p�c,θ � c cot θ � a,φq
�
f,r � 2d

u
u,φ � cf � be

ab� c2
c,r � ce� af

ab� c2
b,r



. (5.2.26)

Definition 5.2.2. We set L2pgq � L2pd, e, f, u, a, b, cq to be the second derivative

terms in the straight out flow equation, that is:

L2pgq :� |gS|∆gSd� pbe,rθ � cf,rθ � ce,rφ � af,rφq � d

u2
pbpu2q,θθ � 2cpu2q,θφ � apu2q,φφq

� cf � be

ab� c2
pba,rθ � cc,rθ � ca,rφ � ac,rφq � ce� af

ab� c2
pbc,rθ � cb,rθ � cc,rφ � ab,rφq.

(5.2.27)
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With this defintion, we further simplify (5.2.26) as follows:

p5.2.26q � L2pgq � cot θp��be,r � bd,θ �ZZcf,r � cd,φq � |g|,θ
2|g| pbe,r � bd,θ � cf,r � cd,φq

� |g|,φ
2|g| p�ce,r � cd,θ � af,r � ad,φq � 2d

u

��d,θ
d
� 2u,θ

u
� cot θ � |g|,θ

2|g|


pbu,θ � cu,φq

�
�
d,φ
d
� 2u,φ

u
� |g|,φ

2|g|


p�cu,θ � au,φq

�
� cf � be

ab� c2

��pcf � beq,θ
cf � be

� |g|,θ
2|g| � cot θ



pba,r � cc,rq �

�pcf � beq,φ
cf � be

� |g|,φ
2|g|



�

p�ca,r � ac,rq
�

� ce� af

ab� c2

��pce� afq,θ
ce� af

� |g|,θ
2|g| � cot θ



pbc,r � cb,rq �

�pce� afq,φ
ce� af

� |g|,φ
2|g|



�

p�cc,r � ab,rq
�

� b,θe,r � 2d

u
b,θu,θ � cf � be

ab� c2
b,θa,r � ce� af

ab� c2
b,θc,r ������be,r cot θ�2d

u
bu,θ cot θ

� cf � be

ab� c2
ba,r cot θ � ce� af

ab� c2
bc,r cot θ � c,φe,r � 2d

u
c,φu,θ � cf � be

ab� c2
c,φa,r

� ce� af

ab� c2
c,φc,r � c,θf,r � 2d

u
c,θu,φ � cf � be

ab� c2
c,θc,r � ce� af

ab� c2
c,θb,r �XXXXXcf,r cot θ

�2d

u
cu,φ cot θ � cf � be

ab� c2
cc,r cot θ � ce� af

ab� c2
cb,r cot θ � a,φf,r � 2d

u
a,φu,φ

� cf � be

ab� c2
a,φc,r � ce� af

ab� c2
a,φb,r. (5.2.28)
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p5.2.28q � L2pgq � cot θpbd,θ � cd,φq � |g|,θ
2|g| pbe,r � bd,θ � cf,r � cd,φq

� |g|,φ
2|g| p�ce,r � cd,θ � af,r � ad,φq

� 2d

u

��d,θ
d
� 2u,θ

u
� cot θ � |g|,θ

2|g|


pbu,θ � cu,φq �

�
d,φ
d
� 2u,φ

u
� |g|,φ

2|g|


�

p�cu,θ � au,φq
�

� cf � be

ab� c2

��pcf � beq,θ
cf � be

� |g|,θ
2|g| � cot θ



pba,r � cc,rq �

�pcf � beq,φ
cf � be

� |g|,φ
2|g|



�

p�ca,r � ac,rq
�

� ce� af

ab� c2

��pce� afq,θ
ce� af

� |g|,θ
2|g| � cot θ



pbc,r � cb,rq �

�pce� afq,φ
ce� af

� |g|,φ
2|g|



�

p�cc,r � ab,rq
�

� pb,θe,r � c,φe,r � c,θf,r � a,φf,rq � 2d

u
pb,θu,θ � c,φu,θ � c,θcφ � a,φu,φq

� cf � be

ab� c2
pb,θa,r � a,rc,φ � c,rc,θ � a,φc,rq � ce� af

ab� c2
pb,θc,r � c,rc,φ � b,rc,θ � a,φb,rq

� 2d

u
cot θpbu,θ � cu,φq � cf � be

ab� c2
cot θpba,r � cc,rq � ce� af

ab� c2
cot θpbc,r � cb,rq

(5.2.29)
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Finally the above can be simplified to:

L2pgq � cot θpbd,θ � cd,φq � |g|,θ
2|g| pbe,r � bd,θ � cf,r � cd,φq � |g|,φ

2|g| p�ce,r � cd,θ � af,r

� ad,φq

� 2d

u

��
d,θ
d
� 2u,θ

u
� |g|,θ

2|g|


pbu,θ � cu,φq �

�
d,φ
d
� 2u,φ

u
� |g|,φ

2|g|


p�cu,θ � au,φq

�

� cf � be

ab� c2

��pcf � beq,θ
cf � be

� |g|,θ
2|g| � 2 cot θ



pba,r � cc,rq �

�pcf � beq,φ
cf � be

� |g|,φ
2|g|



�

p�ca,r � ac,rq
�

� ce� af

ab� c2

��pce� afq,θ
ce� af

� |g|,θ
2|g| � 2 cot θ



pbc,r � cb,rq �

�pce� afq,φ
ce� af

� |g|,φ
2|g|




p�cc,r � ab,rq
�

� pb,θe,r � c,φe,r � c,θf,r � a,φf,rq � 2d

u
pb,θu,θ � c,φu,θ � c,θcφ � a,φu,φq

� cf � be

ab� c2
pb,θa,r � a,rc,φ � c,rc,θ � a,φc,rq � ce� af

ab� c2
pb,θc,r � c,rc,φ � b,rc,θ � a,φb,rq.

(5.2.30)

�: |gS|∆gSd� F pd, d1q.

Therefore we have the following characterization of the fourth condition (5.1.11):

Proposition 5.4. The fourth condition (5.1.11) is a second order elliptic PDE in

d:

∆gSd�Gpd, d1q � 0, (5.2.31)

where G :� F
|gS |

� F
r4 sin2 θ

.

If Equation p5.2.31q is solvable, then many spacetimes that admit straight out flow

coordinate chart exist, even beyond spherically symmetric examples. A necessary
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condition for (5.2.31) to be solvable if

»
St,r

Gpd, d1q dAt,r � 0. (5.2.32)

We conjecture that this is always the case. The verification of (5.2.32) is still work

in progress.
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6

Conclusions and Open Problems

We have constructed many examples of non-spherically symmetric, non-static space-

times that admit smooth global solutions to inverse mean curvature vector flow.

Prior to our work, such solutions were only known in spherically symmetric and

static spacetimes. Our work seems to suggest that spacetimes that admit inverse

mean curvature vector flow solutions might exist generically. However, this more

general problem is still open:

Problem 6.1. Given an arbitrary spacetime. Can we always find a “right” initial

surface such that inverse mean curvature vector flow starting with this surface exists

for all time?

Going to the big picture of relating local and global notions of mass, it is still

unknown that:

Problem 6.2. Given a spacetime that is sufficiently asymptotically flat (e.g.

Schwarzschild outside a compact set). Does the Hawking of inverse mean curva-

ture vector flow surfaces approach the total mass of the spacetime?

A natural next step is to consider the following problem:
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Problem 6.3. Given a spherically symmetric spacetime that admits an inverse mean

curvature vector flow coordinate chart. Consider a perturbation of the spacetime

metric. Does the perturbed metric admit an inverse mean curvature vector flow

coordinate chart as well?

We conjecture that this is always the case for some Minkowski spacetimes:

Conjecture 6.1. Given Minkowski space with inverse mean curvature vector flow

coordinate chart that can be smoothly extended to the boundary, consider a pertur-

bation of the spacetime metric. The resulting spacetime still admits inverse mean

curvature vector flow solutions (in a single spacelike hypersurface) that exist for all

time.
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Appendix A

Geometric Calculations

A.1 Ricci, Scalar and Einstein Curvature of Spherically Symmetric
Spacetime

In this subsection, we are going to compute the Ricci, Scalar and Einstein curvature

of the spherically symmetric space time pN4, gq, with coordinates pt, r, θ, φq, such

that g has the local coordinate representation as in p3.4.1q:

g �

���������

t r θ φ

t �v2pt, rq 0 0 0

r 0 u2pt, rq 0 0

θ 0 0 r2 0

φ 0 0 0 r2 sin2 θ

��������

(A.1.1)

Note that tBt, Br, Bθ, Bφu form a local frame of the tangent bundle. We assume that

the connection on pN4, gq is the Levi-Civita connection. The Einstein summation

convention will be used, and colons will always denote the coordinate chart derivative

whereas semicolons will denote covariant derivatives.In the following, we will use

Latin letters i, j, k, l and so on to be indices taking values in tt, r, θ, φu. Recall the
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following formulas from Riemannian geometry:

Γkij �
1

2
gklpgjl,i � gil,j � gij,lq (Christoffel symbols)

Ricij � RicpBi, Bjq � Γkij,k � Γkik,j � ΓkkmΓmij � ΓkjmΓmik (Ricci curvature)

R � trgRic (scalar curvature)

We will write the Christoffel symbols in four matrices Γt,Γr,Γθ, and Γφ as in Alan

Parry’s survey paper [[35]]. Now we compute them in sequence, using the fact that

the metric g is diagonal in our coordinates.

1. The computation of Γt:

• Γttt � 1
2
gttpgtt,tq � 1

2
1
v2 2vv,t � v,t

v
.

• Γttr � Γtrt � 1
2
gttpgrt,t � gtt,r � gtr,tq � 1

2
1
v2 p2vv,rq � v,r

v
.

• Γttθ � Γtθt � 1
2
gttpgθt,t � gtt,θ � gtθ,tq � 0.

• Γttφ � Γtφt � 1
2
gttpgφt,t � gtt,φ � gtφ,tq � 0.

• Γtrr � 1
2
gttp2grt,r � grr,tq � 1

2
1
v2 p2uu,tq � uu,t

v2 .

• Γtrθ � Γtθr � 1
2
gttpgθt,r � grt,θ � grθ,tq � 0.

• Γtrφ � Γtφr � 1
2
gttpgφt,r � grt,φ � grφ,tq � 0.

• Γtθθ � 1
2
gttp2gθt,θ � gθθ,tq � 0.

• Γtθφ � Γtφθ � 1
2
gttpgφt,θ � gθt,φ � gθφ,tq � 0.

• Γtφφ � 1
2
gttp2gφt,φ � gφφ,tq � 0.

Therefore we have

Γt �

���������

t r θ φ

t v,t
v

v,r
v

0 0

r v,r
v

uu,t
v2 0 0

θ 0 0 0 0

φ 0 0 0 0

��������

(A.1.2)
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2. The computation of Γr:

• Γrtt � 1
2
grrp2gtr,t � gtt,rq � 1

2
1
u2 p2vv,rq � vv,r

u2 .

• Γrtr � Γrrt � 1
2
grrpgrr,t � gtr,r � gtr,rq � 1

2
1
u2 p2uu,tq � u,t

u
.

• Γrtθ � Γrθt � 1
2
grrpgθr,t � gtr,θ � gtθ,rq � 0.

• Γrtφ � Γrφt � 1
2
grrpgφr,t � gtr,φ � gtφ,rq � 0.

• Γrrr � 1
2
grrgrr,r � 1

2
1
u2 p2uu,rq � u,r

u
.

• Γrrθ � Γrθr � 1
2
grrpgθr,r � grr,θ � grθ,rq � 0.

• Γrrφ � Γrφr � 1
2
grrpgφr,r � grr,φ � grφ,rq � 0.

• Γrθθ � 1
2
p2gθr,θ � gθθ,rq � 1

2
1
u2 p�2rq � � r

u2 .

• Γrθφ � Γrφθ � 1
2
grrpgφr,θ � gθr,φ � gθφ,rq � 0.

• Γrφφ � 1
2
grrp2gφr,φ � gφφ,rq � 1

2
1
u2 p�2r sin2 θq � � r sin2 θ

u2 .

Therefore we have

Γr �

���������

t r θ φ

t vv,r
u2

u,t
u

0 0

r u,t
u

u,r
u

0 0

θ 0 0 � r
u2 0

φ 0 0 0 � r sin2 θ
u2

��������

(A.1.3)

3. The computation of Γθ:

• Γθtt � 1
2
gθθp2gtθ,t � gtt,θq � 0.

• Γθtr � Γθrt � 1
2
gθθpgtθ,r � grθ,t � gtt,θq � 0.

• Γθtθ � Γθθt � 1
2
gθθpgθθ,t � gtθ,θ � gtθ,θq � 0.

• Γθtφ � Γθφt � 1
2
gθθpgφθ,t � gtθ,φ � gtφ,θq � 0.
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• Γθrr � 1
2
gθθp2grθ,r � grr,θq � 0.

• Γθrθ � Γθθr � 1
2
gθθpgθθ,r � grθ,θ � grθ,θq � 1

2
1
r2 2r � 1

r
.

• Γθrφ � Γθφr � 1
2
gθθpgφθ,r � grθ,φ � grφ,θq � 0.

• Γθθθ � 1
2
gθθgθθ,θ � 0.

• Γθθφ � Γθφθ � 1
2
gθθpgφθ,θ � gθθ,φ � gθφ,θq � 0.

• Γθφφ � 1
2
gθθp2gφθ,φ � gφφ,θq � 1

2
1
r2 p�2r2 sin θ cos θq � �sinθ cos θ.

Therefore we have

Γθ �

���������

t r θ φ

t 0 0 0 0

r 0 0 1
r

0

θ 0 1
r

0 0

φ 0 0 0 � sin θ cos θ

��������

(A.1.4)

4. The computation of Γφ:

• Γφtt � 1
2
gφφp2gtφ,t � gtt,φq � 0.

• Γφtr � Γφrt � 1
2
gφφpgrφ,t � gtφ,r � gtr,φq � 0.

• Γφtθ � Γφθt � 1
2
gφφpgθφ,t � gtφ,θ � gtθ,φq � 0.

• Γφtφ � Γφφt � 1
2
gφφpgφφ,t � gtφ,φ � gtφ,φq � 0.

• Γφrr � 1
2
gφφp2grφ,r � grr,φq � 0.

• Γφrθ � Γφθr � 1
2
gφφpgθφ,r � grφ,θ � grθ,φq � 0.

• Γφrφ � Γφφr � 1
2
gφφpgφφ,r � grφ,φ � grφ,φq � 1

2
1

r2 sin2 θ
2r sin2 θ � 1

r
.

• Γφθθ � 1
2
gφφp2gθφ,θ � gθθ,φq � 0.

• Γφθφ � Γφφθ � 1
2
gφφpgφφ,θ � gθφ,φ � gθφ,φq � 1

2
1

r2 sin2 θ
r22 sin θ cos θ � cos θ

sin θ
.
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• Γφφφ � 1
2
gφφgφφ,φ � 0.

Therefore we have

Γφ �

���������

t r θ φ

t 0 0 0 0

r 0 0 0 1
r

θ 0 0 0 cos θ
sin θ

φ 0 1
r

cos θ
sin θ

0

��������

(A.1.5)

Now we compute each of the components of the Ricci curvature with respect to

the basis tBt, Br, Bθ, Bφu.

1.

Rictt � RicpBt, Btq

� Γrtt,r � Γrtr,t � ΓrrtΓ
t
tt � ΓrrrΓ

r
tt � ΓrttΓ

t
tr � ΓrtrΓ

r
tr � ΓθθrΓ

r
tt � ΓφφrΓ

r
tt

�
�vv,r
u2

	
,r
�
�u,t
u

	
,t
� u,t

u

v,t
v
� u,r

u

vv,r
u2

� vv,r
u2

v,r
v
� u,t

u

u,t
u
� 2

r

vv,r
u2

� 1

u2

�
vv,rr � 2

r
vv,r



� u,r
u3
vv,r � 1

u

�u,tv,t
v

� u,tt

	

2.

Rictr � RicpBt, Brq � Γttr,t � Γttt,r � ΓttrΓ
r
tr � ΓtrrΓ

r
tt � ΓθθrΓ

r
tr � ΓφφrΓ

r
tr

�
�v,r
v

	
,t
�
�v,t
v

	
,r
� v,r

v

u,t
u
� uu,t

v2

vv,r
u2

� 1

r

u,t
u
� 1

r

u,t
u

� 2

r

u,t
u

3.

Rictθ � Ricθt � �Γttt,θ � Γrtr,θ � 0
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4.

Rictφ � Ricφt � �Γttt,φ � Γrtr,φ � 0

5.

Ricrr � Γtrr,t � Γtrt,r � ΓtttΓ
t
rr � ΓttrΓ

r
rr � ΓtrtΓ

t
rt � ΓtrrΓ

r
rt � Γθrθ,r � ΓθθrΓ

r
rr � ΓθrθΓ

θ
rθ

� Γφrφ,r � ΓφφrΓ
r
rr � ΓφrφΓφrφ

�
�uu,t
v2

	
,t
�
�v,r
v

	
,r
� v,t

v

uu,t
v2

� v,r
v

u,r
u
� v,r

v

v,r
v
� uu,t

v2

u,t
u
� 2

r

u,r
u

� �v,rr
v

� 2

r

u,r
u
� v,t
v3
uu,t � 1

v

�uu,tt
v

� v,ru,r
u

	
6.

Ricrθ � Ricθr � 0

7.

Ricrφ � Ricφr � 0

8.

Ricθθ � ΓttrΓ
r
θθ � Γrθθ,r � ΓrrrΓ

r
θθ � ΓrθθΓ

θ
θr � Γφθφ,θ � ΓφφrΓ

r
θθ � ΓφθφΓφθφ

� v,r
v

�r
u2

�
��r
u2

	
,r
� u,r

u

�r
u2

� �r
u2

1

r
�
�

cos θ

sin θ



,θ

� 1

r

�r
u2

�
�

cos θ

sin θ


2

�
�

1 � 1

u2



� r

u,r
u3

� r
v,r
v

1

u2

9.

Ricθφ � Ricφθ � 0

10.

Ricφφ � ΓttrΓ
r
φφ � Γrφφ,r � ΓrrrΓ

r
φφ � ΓrφφΓφφr � Γθφφ,θ � ΓθθrΓ

r
φφ � ΓθφφΓφφθ

� v,r
v

�r sin2 θ

u2
�
��r sin2 θ

u2



,r

� u,r
u

�r sin2 θ

u2
� p� sin θ cos θq,θ � sin θ cos θ

cos θ

sin θ

�
�

1 � 1

u2



sin2 θ � r sin2 θ

u,r
u3

� r sin2 θ
v,r
v

1

u2
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Now we can compute the scalar curvature R of this metric as follows:

R � trgRic � gttRictt � grrRicrr � gθθRicθθ � gφφRicφφ (g is diagonal)

� �1

v2

�
1

u2

�
vv,rr � 2

r
vv,r



� u,r
u3
vv,r � v,t

v

u,t
u
� u,tt

u

�

� 1

u2

�
�v,rr

v
� 2

r

u,r
u
� v,t
v3
uu,t � 1

v

�uu,tt
v

� v,ru,r
u

	�

� 2

r2

��
1 � 1

u2



� r

u,r
u3

� r
v,r
v

1

u2

�

� � 1

u2

v,rr
v

� 2

r

1

u2

v,r
v
� u,r
u3

v,r
v
� u,t

u

v,t
v3

� u,tt
u

1

v2
� 1

u2

v,rr
v

� 2

r

u,r
u3

� u,r
u3

v,r
v

� u,t
u

v,t
v3

� u,tt
u

1

v2
� 2

r2

�
1 � 1

u2



� 2

r

u,r
u3

� 2

r

1

u2

v,r
v

� � 2

u2

v,rr
v

� 2
u,r
u3

v,r
v
� 2

u,t
u

v,t
v3

� 2
u,tt
u

1

v2
� 4

r

u,r
u3

� 4

r

1

u2

v,r
v
� 2

r2

�
1 � 1

u2



That is

R � � 2

u2

v,rr
v
�2

u,r
u3

v,r
v
�2

u,t
u

v,t
v3
�2

u,tt
u

1

v2
� 4

r

u,r
u3

� 4

r

1

u2

v,r
v
� 2

r2

�
1 � 1

u2



. (A.1.6)

The Einstein curvature tensor G is given by

G � Ric � 1

2
Rg. (A.1.7)

In our case of the spacetime metric pA.1.1q, we compute the components of G

with respect to the basis tBt, Br, Bθ, Bφu:

1.

Gtt � GpBt, Btq � Rictt � 1

2
Rgtt � 1

u2

�
vv,rr � 2

r
vv,r



� u,r
u3
vv,r

� 1

u

�u,tv,t
v

� u,tt

	
� v2

2
R

� 2

r

u,r
u3
v2 � 1

r2
v2

�
1 � 1

u2



(A.1.8)
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2.

Gtr � Grt � Rictr � 1

2
Rgtr � Rictr � 2

r

u,t
u

(A.1.9)

3.

Gtθ � Gθt � Rictθ � 1

2
Rgtθ � Rictθ � 0

4.

Gtφ � Gφt � Rictφ � 1

2
Rgtφ � Rictφ � 0

5.

Grr � Ricrr � 1

2
Rgrr � �v,rr

v
� 2

r

u,r
u
� v,t
v3
uu,t � 1

v

�uu,tt
v

� v,ru,r
u

	
� u2

2
R

� 2

r

v,r
v
� u2

r2
� 1

r2
(A.1.10)

6.

Grθ � Gθr � Ricrθ � 1

2
Rgrθ � Ricrθ � 0

7.

Grφ � Gφr � Ricrφ � 1

2
Rgrφ � Ricφ � 0

8.

Gθθ � Ricθθ � 1

2
Rgθθ �

�
1 � 1

u2



� r

u,r
u3

� r
v,r
v

1

u2
� r2

2
R

� r2

u2

v,rr
v

� r2u,r
u3

v,r
v
� r2u,t

u

v,t
v3

� r2u,tt
u

1

v2
� r

u,r
u3

� r
1

u2

v,r
v

(A.1.11)

9.

Gφφ � Ricφφ � 1

2
Rgφφ � sin2 θ � Ricθθ � 1

2
Rr2 sin2 θ � sin2 θ �Gθθ

� sin2 θ

�
r2

u2

v,rr
v

� r2u,r
u3

v,r
v
� r2u,t

u

v,t
v3

� r2u,tt
u

1

v2
� r

u,r
u3

� r
1

u2

v,r
v



(A.1.12)
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A.2 Calculations in Inverse Mean Curvature Vector Flow Coordinates

A.2.1 Determinant of the Spacetime Metric and its Inverse in Inverse Mean Cur-
vature Vector Flow Coordinates

Given a matrix A, its pi, jqth cofactor is Cij :� p�1qi�jMij, where Mij is determinant

of the matrix obtained by deleting the ith row and the jth column of A. The adjoint

matrix adjpAq is defined as adjpAqij :� Cji � p�1qj�iMji. If A is invertible, then

A�1 � 1
detpAq

adjpAq.
Let A be the matrix representation of the spacetime metric g as in (4.2.1).

adjpAq11 � C11 �M11 � u2pab� c2q (A.2.1)

adjpAq12 � C21 � �M21 � �dpab� c2q (A.2.2)

adjpAq13 � C31 �M31 � u2pcf � beq (A.2.3)

adjpAq14 � C41 � �M41 � u2pce� afq (A.2.4)

adjpAq22 � C22 �M22 � �v2pab� c2q � fpce� afq � epcf � beq (A.2.5)

adjpAq23 � C32 � �M32 � �dpcf � beq (A.2.6)

adjpAq24 � C42 �M42 � �dpce� afq (A.2.7)

adjpAq33 � C33 �M33 � �u2v2b� u2f 2 � bd2 (A.2.8)

adjpAq34 � C43 � �M43 � u2v2c� u2ef � cd2 (A.2.9)

adjpAq44 � C44 �M44 � �u2v2a� u2e2 � ad2 (A.2.10)

detpgq � A21C21 � A22C22 � �dM21 � u2M22

� �d2pab� c2q � u2
�� v2pab� c2q � fpce� afq � epcf � beq�

� p�u2v2 � d2qpab� c2q � eu2pcf � beq � fu2pce� afq (A.2.11)

These prove Lemma 4.5.
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A.2.2 Computation of xn,ny

Lemma A.1.

xn,ny � detpgq
u2pab� c2q �

detpgq
u2detpgSq �:

|g|
u2|gS| , (A.2.12)

where we set |gS| :� detpgSq.

Proof. We simply compute that

xn,ny �
B B
Bt �

�d
u2

B
Br �

cf � be

ab� c2

B
Bθ �

ce� af

ab� c2

B
Bφ ,

B
Bt �

�d
u2

B
Br �

cf � be

ab� c2

B
Bθ

� ce� af

ab� c2

B
Bφ
F

� x BBt ,
B
Bty �

�d
u2

x BBt ,
B
Br y �

cf � be

ab� c2
x BBt ,

B
Bθ y �

ce� af

ab� c2
x BBt ,

B
Bφy

� �d
u2

x BBr ,
B
Bty �

d2

u4
x BBr ,

B
Br y � 0 � 0

� cf � be

ab� c2
x BBθ ,

B
Bty � 0 �

�
cf � be

ab� c2


2

x BBθ ,
B
Bθ y �

pcf � beqpce� afq
pab� c2q2 x BBθ ,

B
Bφy

� ce� af

ab� c2
x BBφ,

B
Bty � 0 � pce� afqpcf � beq

pab� c2q2 x BBφ,
B
Bθ y �

�
ce� af

ab� c2


2

x BBφ,
B
Bφy

� �v2 � �d2

u2
� 1

ab� c2
p2pcf � beqe� 2pce� afqfq � �d2

u2
� d2

u2

� 2
pce� afqpcf � beqc

pab� c2q2 �
�
cf � be

ab� c2


2

a�
�
ce� af

ab� c2


2

b

�: �v2 � �d2

u2
� 1

ab� c2
p2cef � 2be2 � 2cef � 2af 2q � pAq
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where pAq is

A � 2
pce� afqpcf � beqc

pab� c2q2 �
�
cf � be

ab� c2


2

a�
�
ce� af

ab� c2


2

b

� 1

pab� c2q2
�

2c3ef � 2bc2e2 � 2ac2f 2 � 2abcef � ac2f 2 � ab2e2 � 2abcef � bc2e2

� a2bf 2 � 2abcef
	

� 1

pab� c2q2
�

2c3ef � 2abcef � bc2e2 � ac2f 2 � ab2e2 � a2bf 2
	

� 1

pab� c2q2
�

2cefpc2 � abq � c2paf 2 � be2q � abpbe2 � af 2q
	

� 1

pab� c2q2
�
� 2cefpab� c2q � paf 2 � be2qpab� c2q

	
� 1

ab� c2
paf 2 � be2 � 2cefq.

Plug pAq back into the above, we get:

xn,ny � �v2 � �d2

u2
� 1

ab� c2
p2cef � 2be2 � 2cef � 2af 2q

� 1

ab� c2
paf 2 � be2 � 2cefq

� �v2 � �d2

u2
� 1

ab� c2
p2cef � 2be2 � 2cef � 2af 2 � af 2 � be2 � 2cefq

� �u2v2 � d2

u2
� 1

ab� c2
p2cef � be2 � af 2q

� 1

u2pab� c2q
�
p�u2v2 � d2qpab� c2q � u2p2cef � be2 � af 2q

	
(A.2.13)

� |g|
u2|gS| , (A.2.14)

by Equation (4.2.2).
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A.2.3 Laplacian along St,r

Note that the laplacian of d on the surface pSt,r, gSq is:

∆gSd � divgSp∇gSdq �
1a|gS|

2̧

i�1

B
Bxi

�
p∇gSdqi

a
|gS|

	
� 1a|gS|

2̧

i�1

B
Bxi

�
pgijS d,jq

a
|gS|

	

� 1

r2 sin θ

� B
Bθ
�
pgθθS d,θ � gθφS d,φqr2 sin θ

	
� B
Bφ
�
pgφθS d,θ � gφφS d,φqr2 sin θ

	


� 1

r2 sin θ

�
pgθθS,θd,θ � gθθS d,θθ � gθφS,θd,φ � gθφS d,φθqr2 sin θ � pgθθS d,θ � gθφS d,φqr2 cos θ

� pgφθS,φd,θ � gφθS d,θφ � gφφS,φd,φ � gφφS d,φφqr2 sin θ � 0
	

� pgθθS d,θθ � 2gθφS d,φθ � gφφS d,φφq (second order derivative in d)

� pgθθS,θd,θ � gθφS,θd,φ � gφθS,φd,θ � gφφS,φd,φq � pgθθS d,θ � gθφS d,φq cot θ (A.2.15)

That is:

∆gSd � pgθθS d,θθ � 2gθφS d,φθ � gφφS d,φφq � pgθθS,θ � gφθS,φ � gθθS cot θqd,θ

� pgθφS,θ � gφφS,φ � gθφS cot θqd,φ

� 1

|gS|
�
pbd,θθ � 2cd,φθ � ad,φφq � pb,θ � 2b cot θ � c,φ � b cot θqd,θ

� p�c,θ � 2c cot θ � a,φ � c cot θqd,φ
	

� 1

|gS|
�
pbd,θθ � 2cd,φθ � ad,φφq � pb,θ � b cot θ � c,φqd,θ � p�c,θ � c cot θ � a,φqd,φ

	
(A.2.16)

For the second to the last equality above, we have used the following computa-

tions:

|gS|,θ � pr4 sin2 θq,θ � r42 sin θ cos θ � 2r4 sin2 θ cot θ � 2|gS| cot θ. (A.2.17)
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and

gθθS,θ �
�

b

|gS|


θ

� b,θ|gS| � b|gS|,θ
|gS|2 � 1

|gS| pb,θ � 2b cot θq; gθθS,φ �
�

b

|gS|


φ

� b,φ
|gS| .

(A.2.18)

Similar for the other derivatives of the inverse of gS.

A.3 First Variation of Area

Let Σn�1 be an embedded closed (compact without boundary) hypersurface in a

Riemannian manifold pMn, g,∇q. Endow Σ with the induced metric. We consider a

variation of Σ as follows:

F : Σ � p�δ, δq ÝÑM, δ ¡ 0, (A.3.1)

such that for all x P Σt :� F pΣ, tq, and t P p�δ, δq,

B
BtF px, tq � ηpx, tqνpx, tq, (A.3.2)

where η is a smooth function η P C8pΣ � p�δ, δqq, and νpx, tq is the unit outward

normal vector to Σt at px, tq. Therefore the variational vector fields along each surface

Σt is B
Bt
� ηt � νt. Let gt be the induced metric on Σt, and let ∇t be the associated

Levi-Civita connection. Let dσt be the corresponding pn � 1q-volume form on Σt,

and At the pn� 1q-volume. Let Vt be the n-volume enclosed by Σt. We shall refer to

At as the area of Σt, and Vt the volume, in analogy to the case where Σt are surfaces

in a 3-dimensional manifold. Let IIt and Ht :� trgtII be the second fundamental

form and the mean curvature of Σ with respect to νpx, tq respectively. We first

compute the variation of dσt. Let tU ;x1, x2, � � � , xn�1u be a local coordinate chart of

Σ, then Σt can be locally parametrized as tx1, x2, � � � , xn�1, tu with each fixed t. Let
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gt � pgtqijdxidxj be the local representation of the metric on Σt, i, j � 1, 2, � � � , n�1.

B
Btdσt �

B
Bt
a

detpgtqdx1 ^ dx2 � � � ^ dxn�1

� 1

2

1a
detpgtq

detpgtq � trace

�
g�1
t

B
Btgt



dx1 ^ dx2 ^ � � � ^ dxn�1 (A.3.3)

� 1

2

a
detpgtqtrace

�
g�1
t

B
Btgt



dx1 ^ dx2 ^ � � � ^ dxn�1

where equation pA.3.3q follows from the identity

d

dt
detpAq � detpAqtrace

�
A�1 d

dt
A



, (A.3.4)

for any square matrix A with entries functions of t. Now

B
Btpgtqij �

B
Btx

B
Bxi ,

B
Bxj y � x∇ B

Bt

B
Bxi ,

B
Bxj y � x B

Bxi ,∇ B
Bt

B
Bxj y

� x∇ B

Bxi

B
Bt ,

B
Bxj y � x B

Bxi ,∇ B

Bxj

B
Bty (∇ is torsion free)

� x∇ B

Bxi
ην,

B
Bxj y � x B

Bxi ,∇ B

Bxj
ηνy

� 2ηIIt

� B
Bxi ,

B
Bxj



. (A.3.5)

where the last identity follows from the fact that ν is a normal to the surfaces.

Notice that Equation (A.3.5) implies that the first derivative of the metric (along

the variational vector fields) is given by the second fundamental form. Now plug

(A.3.5) into (A.3.3):

B
Btdσt �

1

2

a
detpgtqtrace

�
g�1
t � 2η � IItp BBxi ,

B
Bxj q



dx1 ^ dx2 ^ � � � ^ dxn�1 � Htηdσt

(A.3.6)

Therefore

B
BtAt �

»
Σt

B
Btdσt �

»
Σt

Htpxqηpx, tq dσtpxq. (A.3.7)
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A.4 Second Variation of Area

Now we compute the first variation of mean curvature Ht, which gives rise to the

second derivative of area. Recall that Ht � gijt pIItqij in local coordinates, i, j �
1, 2, � � � , n� 1. Thus

B
BtHt � B

Btg
ij
t pIItqij � gijt

B
BtpIItqij (A.4.1)

Since 0 � B
Bt
pgtg�1

t q � p B
Bt
gtqg�1

t � gtp BBtg�1
t q, we have B

Bt
g�1
t � �g�1

t p B
Bt
gtqg�1

t . Thus

the first term in the above becomes

B
Btg

ij
t pIItqij � �gikt

� B
Btpgtqkl



gljt pIItqij � �gikt 2ηpIItqklgljt pIItqij � �2η||IIt||2

(A.4.2)

We now compute the derivative of the second fundamental form.

B
BtpIItqij �

B
Btx∇ B

Bxi
ν,

B
Bxj y

� x∇ B
Bt
∇ B

Bxi
ν,

B
Bxj y � x∇ B

Bxi
ν,∇ B

Bt

B
Bxj y

� x∇ B

Bxi
∇ B

Bt
ν,

B
Bxj y � xp∇ B

Bt
∇ B

Bxi
�∇ B

Bxi
∇ B

Bt
�∇r B

Bxi
, B
Bt
sqν,

B
Bxj y � x∇ B

Bxi
ν,∇ B

Bt

B
Bxj y

� x∇ B

Bxi
∇ B

Bt
ν,

B
Bxj y � xRgp BBt ,

B
Bxi qν,

B
Bxj y � x∇ B

Bxi
ν,∇ B

Bxj

B
Bty

� x∇ B

Bxi
p�∇Σtηq ,

B
Bxj y � ηxRpν, B

Bxi qν,
B
Bxj y � ηx∇ B

Bxi
ν,∇ B

Bxj
νy

where we have used two lemmas, which will be proved below:

Lemma A.2. ∇ B

Bxi
ν is tangential, i.e., x∇ B

Bxi
ν, νy � 0.

Lemma A.3. ∇ B
Bt
ν � �∇Σtη, where ∇Σt is the surface gradient on Σt.
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Therefore

gijt
B
BtpIItqij � �∆Σtη � ηgijt xRpν,

B
Bxi q,

B
Bxj , νy � η||IIt||2

� �∆Σtη � ηgijxRpν, B
Bxi q,

B
Bxj , νy � η||IIt||2 (ambient metric g trace)

� �∆Σtη � ηRicgpν, νq � η||IIt||2.

where we used

Lemma A.4. gijt x∇ B

Bxi
p∇Σtηq , B

Bxj
y � ∆Σtη.

and

Lemma A.5. gijt x∇ B

Bxi
ν,∇ B

Bxj
νy � ||IIt||2.

Combining above, we get

B
BtHt � �∆Σtη � η

�
Ricgpν, νq � ||IIt||2

� �: LΣt , (A.4.3)

where LΣt is called the stability operator of Σt. The second variation of area is then

given by:

B2

Bt2At �
»

Σ

ηpx, tqpLΣtηqpx, tq dσtpxq �Htpxq
� B
Btηpx, tq



dσtpxq �H2

t ηpx, tq2 dσtpxq.

(A.4.4)

Now we verity the above lemmas.

Proof of Lemma A.2. Since ν is the unit outward normal vector field, we have

0 � B
Bxi xν, νy � 2x∇ B

Bxi
ν, νy. (A.4.5)

Thus ∇ B

Bxi
ν is tangential. Similarly, ∇ B

Bt
ν is also tangential.
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Proof of Lemma A.3. Recall that the gradient of a smooth function η along the sur-

face Σt is defined as

∇Σtη :� ∇η � x∇η, νyν, (A.4.6)

that is, the tangential component of the gradient with respect to the ambient metric.

For any point p P Σt, choose geodesic normal coordinates tU ; e1, e2, � � � , enu around p

such that e1, e2, � � � , en�1 span TpΣt, and en � ν. Since ∇eiν is tangential, it suffices

to show that x∇ B
Bt
ν, eiyppq � x�∇Σtη, eiyppq, for i � 1, 2, � � � , n� 1. Indeed:

x∇ B
Bt
ν, eiyppq � �xν,∇ B

Bt
eiyppq � �xν,∇ei

B
Btyppq (∇ is torsion free)

� �eipηqxν, νyppq � ηxν,∇eiνyppq

� �eipηqppq (∇eiν is tangential)

� �x
n�1̧

j�1

ejpηqej, eiqyppq

� x�∇Σtη, eiyppq.

Since p is arbitrary, ∇ B
Bt
ν � �∇Σtη, as desired.

Proof of Lemma A.4. First note that gijt x∇ B

Bxi
p∇Σtηq, B

Bxj
y � gijt x∇t

B

Bxi

p∇Σtηq, B
Bxj
y.

But

gijt x∇t
B

Bxi
p∇Σtηq,

B
Bxj y � trgtp∇tp∇Σtηqq � divgtp∇Σtηq � ∆Σtη, (A.4.7)

where ∇tp∇Σtηq is the covariant derivative of the vector field ∇Σtη, hence is a p1, 1q-
tensor field.

Proof of Lemma A.5. Define vector fields Xpiq :� ∇ B

Bxi
ν and Y pjq :� ∇ B

Bxj
ν. Using

local coordinates, we can also write Xpiq �
n�1̧

k�1

Xpiqk B
Bxk and Y pjq �

n�1̧

l�1

Y pjql BBxl .
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Then

||IIt||2 � gijt g
kl
t pIItqikpIItqjl � gijt g

kl
t

B
Xpiq, B

Bxk
FB

Y pjq, B
Bxl

F
� gijt g

kl
t XpiqαpgtqαkY pjqβpgtqβl

� gijt pgtqαβXpiqαY pjqβ

� gijt xXpiq, Y pjqy

� gijt x∇ B

Bxi
ν,∇ B

Bxj
νy

as desired.

A.5 Transformation Formulae of Ricci and Scalar Metric under Con-
formal Change of Metrics

Given Riemannian manifold pMn, gq, recall that the Riemann curvature operator R

acts on vector fields X, Y, Z P ΓpTMq as follows:

RpX, Y qZ � DXDYZ �DYDXZ �DrX,Y sZ. (A.5.1)

We can thus define a p1, 3q tensor field R � Rk
lijdx

l b dxi b dxj b B
Bxk

, such that

Rp BBxi ,
B
Bxj q

B
Bxl �: Rk

lij

B
Bxk .

One can verify that

Rk
lij �

BΓkjl
Bxi �

Γkil
Bxj � ΓkimΓmjl � ΓkjmΓmil . (A.5.2)

Using the metric g, we can define a new p0, 4q tensor field Rm :� Rklijdx
kbdxlb

dxi b dxj with components Rklij :� gkmR
m
lij. One verifies that

Rklij � xRpBi, BjqBl, Bky.
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Rm is called the Riemannian curvature tensor with respect to the metric g. The

Ricci curvature in the direction X P TpM is given by

RicpX,Xq :� gjlxRpX, B
Bxj q

B
Bxl , Xy. (A.5.3)

Therefore the Ricci curvature tensor is given by the (2,4)-contraction of the Riemann

curvature tensor, i.e.,

Ricij � Ricp BBxi ,
B
Bxj q � gklxRp BBxi ,

B
Bxk q

B
Bxl ,

B
Bxj y � gklRjlik � gklRikjl � �Rl

ijl

� BΓkij
Bxk �

BΓkik
Bxj � ΓkklΓ

l
ij � ΓkjlΓ

l
ik. (A.5.4)

The scalar curvature is

R :� gijRicij. (A.5.5)

Proposition A.6. Let pMn, gq be a Riemannian manifold of dimension n, and ρ ¡ 0

is a smooth function on M . Consider the new metric rg :� ρg, i.e., rg is a conformal

change of g. Then the corresponding Ricci curvatures changes in the following way:

rRij � Rij�n� 2

2
plog ρq,ij�n� 2

4
plog ρq,iplog ρq,j�1

2
gij

�
∆g log ρ� n� 2

2
|∇ log ρ|2g

�
.

(A.5.6)

Proof. We will verity equation pA.5.6q at the center p P M of a geodesic normal

coordinate neighborhood. Then at p, we have gij � δij and Γkij � 0, and therefore

gij,k � BkxBi, Bjy � xΓmkiBm, Bjy � xBi,ΓnkjBny � 0 at p. (A.5.7)

By pA.5.4q, the Ricci curvature of rg is given by:

rRij � rΓkij,k � rΓkik,j � rΓsijrΓksk � rΓkikrΓksj. (A.5.8)

114



Thus at p, we have:

rRij �
�

Γkij,k �
1

2
δikplog ρq,jk � 1

2
δjkplog ρq,ik � 1

2
gij,kg

klplog ρq,l � 1

2
gijg

kl
,k plog ρq,l

� 1

2
gijg

klplog ρq,lk


�
�

Γkik,j �
1

2
δikplog ρq,kj � 1

2
δkkplog ρq,ij � 1

2
gik,jg

klplog ρq,l

� 1

2
gikg

kl
,j plog ρq,l � 1

2
gikg

klplog ρq,ij



�
�

Γsij �
1

2
δisplog ρq,j � 1

2
δjsplog ρq,i � 1

2
gijg

slplog ρq,l


�

�
Γksk �

1

2
δskplog ρq,k � 1

2
δkkplog ρq,s � 1

2
gskg

klplog ρq,l



�
�

Γsik �
1

2
δisplog ρq,k � 1

2
δksplog ρq,i � 1

2
gikg

slplog ρq,l


�

�
Γksj �

1

2
δskplog ρq,j � 1

2
δjkplog ρq,s � 1

2
gsjg

klplog ρq,l



� Rij � 2 � n

2
plog ρq,ij � 1

2
gijplog ρq,kk � pproduct termsq, (A.5.9)
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where the red terms cancel, green terms cancel and the blue terms vanish at p.

pproduct termsq � 1

4
δjsδkkplog ρq,iplog ρq,s � 1

4
δksδjkplog ρq,iplog ρq,s

� 1

4
gijgskg

slgklplog ρq,lplog ρq,l � 1

4
gikgsjg

slgklplog ρq,lplog ρq,l

� 1

4
gjkg

klplog ρq,lplog ρq,i � n

4
gijg

sjplog ρq,splog ρq,l

� gjkg
klplog ρq,lplog ρq,i � 1

4
gijg

slplog ρq,splog ρq,l

� n� 1

4
plog ρq,iplog ρq,j � 1 � n

4
gijplog ρq,lplog ρq,l � 1

4
gijδlkδlkplog ρq,lplog ρq,l

� 1

4
δilδjlplog ρq,lplog ρq,l

� n� 1

4
plog ρq,iplog ρq,j � n� 1

4
gijplog ρq,lplog ρq,l � 1

4
gijplog ρq,kplog ρq,k

� 1

4
plog ρq,iplog ρq,j

� n� 2

4
plog ρq,iplog ρq,j � 2 � n

4
gijplog ρq,lplog ρq,l (A.5.10)

Where the red terms cancel. Therefore

rRij � Rij � 2 � n

2
plog ρq,ij � 1

2
gijplog ρq,kk � n� 2

4
plog ρq,iplog ρq,j

� 2 � n

4
gijplog ρq,lplog ρq,l

� Rij � n� 2

2
plog ρq,ij � n� 2

4
plog ρq,iplog ρq,j � 1

2

�
∆gpplog ρqq � n� 2

2
|∇plog ρq|2g



(A.5.11)

Corollary A.7. Continue from Proposition pA.6q, then the scalar curvature of rg is

given by:

rR � 1

ρ
R � n� 1

ρ2
∆gρ� pn� 1qpn� 6q

4ρ3
|∇ρ|2g. (A.5.12)
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Proof. We again compute at p, which is the center of a geodesic normal coordinate

neighborhood. The result then follows from a simple calculation:

rR :� rgij rRij � 1

ρ
gij
�
Rij � n� 2

2
plog ρq,ij � n� 2

4
plog ρq,iplog ρq,j

� 1

2

�
∆gplog ρq � n� 2

2
|∇plog ρq|2g

	


� 1

ρ
R � n� 2

2ρ
∆gplog ρq � n� 2

4ρ
gijplog ρq,iplog ρq,j � n

2ρ

�
∆gplog ρq � n� 2

2
|∇ log ρ|2g

�

� 1

ρ
R �

�
n� 2

2ρ
� n

2ρ



∆gplog ρq � n� 2

4ρ
|∇ log ρ|2g �

npn� 2q
4ρ

|∇ log ρ|2g

� 1

ρ
R � 2pn� 1q

2ρ
∆gplog ρq � �n2 � 3n� 2

4ρ
|∇ log ρ|2g

� 1

ρ
R � n� 1

ρ

�
1

ρ
ρ,i



,i

� �n2 � 3n� 2

4ρ

�
1

ρ2
ρ,iρ,i




� 1

ρ
R � n� 1

ρ

�
� 1

ρ2
ρ,iρ,i � 1

ρ
ρ,ii



� �n2 � 3n� 2

4ρ3
|∇ρ|2g

� 1

ρ
R � n� 1

ρ2
∆gρ� 4n� 4 � n2 � 3n� 2

4ρ3
|∇ρ|2g

� 1

ρ
R � n� 1

ρ2
∆gρ� pn� 1qpn� 6q

4ρ3
|∇ρ|2g,

as desired.

We want to eliminate the gradient term, and for that purpose we need to distin-

guish the following two cases.

Corollary A.8. Suppose the manifold is of dimension n � 2. Let ρ :� e2u, where

u ¡ 0 is a smooth function on M , then

rR � e�2u pR � 2∆guq . (A.5.13)
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Proof. We plug ρ � e2u into equation pA.5.12q, and again, we will be computing at

p PM in a geodesic normal coordinate neighborhood:

rR � ρ�1R � ρ�2∆gρ� ρ�3|∇ρ|2

� e�2uR � e�4u
�
e2u2u,i

�
,i
� e�6upe2u2u,iq2

� e�2uR � e�4u
�
e2u2u,i2u,i � e2u2u,ii

�� e�6u4e4uu,iu,i

� e�2u pR � 2∆guq ,

where the red terms cancel.

Corollary A.9. Now suppose manifold is of dimension n ¥ 3, we set ρ :� u
4

n�2 , for

u a positive function on M . Then equation pA.5.12q becomes:

rR � u�
n�2
n�2

�
Ru� 4pn� 1q

n� 2
∆gu



. (A.5.14)

Proof. The result follows from plugging ρ � u
4

n�2 into equation pA.5.12q, again we

will be computing at p:
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rR � u�
4

n�2R � pn� 1qu� 8
n�2 ∆gpu 4

n�2 q � pn� 1qpn� 6q
4

u�
12
n�2 |∇pu 4

n�2 q|2g

� u�
4

n�2R � pn� 1qu� 8
n�2

�
4

n� 2
u

6�n
n�2u,i



,i

� pn� 1qpn� 6q
4

u�
12
n�2

�
4

n� 2


2

� u 2p6�nq
n�2 u,iu,i

� u�
4

n�2R � pn� 1qu� 8
n�2

4

n� 2

�
6 � n

n� 2
u

8�2n
n�2 u,iu,i � u

6�n
n�2u,ii




� pn� 1qpn� 6q
4

�
4

n� 2


2

u
�12�12�2n

n�2 u,iu,i

� u�
4

n�2R � pn� 1q 4

n� 2
u�

n�2
n�2 ∆gu

� |∇u|2g
�
pn� 1q 4

n� 2

6 � n

n� 2
u�

2n
n�2 � pn� 1qpn� 6q

4

�
4

n� 2


2

u�
2n
n�2

�

� u�
4

n�2R � 4pn� 1q
pn� 2q u

�n�2
n�2 ∆gu� |∇u|2g

��4pn� 1qpn� 6q
pn� 2q2 � pn� 1qpn� 6q42

4pn� 2q2



� u� 2n
n�2

� u�
4

n�2R � 4pn� 1q
pn� 2q u

�n�2
n�2 ∆gu

� u�
n�2
n�2

�
Ru� 4pn� 1q

n� 2
∆gu



, (A.5.15)

which is desired.
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