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Abstract:

This paper presents an analysis of various preferential ballot voting systems based
on the idea that voters should be encouraged to vote honestly and independently of
the other votes cast. Random votes are simulated in three and four candidate
elections with N voters, while a block of votes of size b, all of which are all the same,
represents the votes of a subset of the electorate with a given preference. Given b
and N, we examine the likelihood P that, for a variety of voting methods, it benefits
this body of voters to cast a block of votes that does not represent their true
preferences. We then view P as a function of the single variable b/+/N, and compare
the function P for various preferential ballot voting methods, noting which methods
are more likely to encourage dishonest or strategic voting under different
circumstances.
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2. Introduction: The Imperfections of Voting Methods

Various preferential ballot voting methods have been examined as potential ways to
determine the outcome of a many candidate election. These methods aim to gain
information from the electorate in order to choose a candidate as the winner. It is
not always clear how to interpret voter preferences, and various election methods
satisfy different properties regarding these preferences. Arrow’s theorem shows
that no election method satisfies the criteria of universality, monotonicity,
independence of irrelevant alternatives, citizen sovereignty, and non-dictatorship.
As such, various methods are compared based on their strengths, weaknesses, and
various properties they do satisfy, as there is no perfect method.

Recent years have seen various multiple elections with more than two candidates of
great influence. The three candidate US presidential elections of 1992 and 2000
demonstrate the importance of the voting method chosen. In both cases, the
candidate receiving the least votes still received enough votes to potentially
influence the outcome of the election. From this it is clear that the marginal
preferences of these voters among the two more popular candidates is important
and should be accounted for. While the Single Vote Plurality method, used in each
state for US presidential elections, does not take these preferences into account,
other preferential ballot method do, and do not always yield the same results.
Previous approaches compare methods based on properties they satisfy, while this
paper attempts to approach the problem from an angle of strategy.

3. Overview of Voting Methods and Properties

This section will give a brief overview of the five voting methods we examine in this
paper. For more complete descriptions with examples and properties of these
methods, the reader should look to Wright [1] and Tabachnik [2], each of which
spends a great deal of time defining and deriving properties of these methods and
others.

3.1. Single Vote Plurality

Single Vote Plurality is perhaps the most well known voting method. Among any
number of candidates, each voter chooses exactly one, and casts their vote. The
votes are tallied and the candidate with the most (first place) votes wins.

3.2. Ranked Pairs

The ranked pairs method, also called the Tideman method, is a margin of victory
matrix method. Given a margin of victory matrix M, where M;; is given by the
number of voters who prefer candidate i to candidate j, each pairwise matchup is
ranked by their margin of victory. In order, each matchup is mandated unless it



would cause an intransitive cycle, in which case it is removed. Once completed, the
method leaves a clear ordering, as no cycle is allowed to exist. The first candidate in
the ordering is declared the winner.

3.3. Borda Count

Borda count is a quantitative ballot method where candidates are given points
based on where they were rated on each voter’s ballot. In an election with N
candidates, a voter’s top choice will receive N points, their next choice, N-1, and
their last choice one point. It should be noted that any point system given by an
arithmetic progression will yield the same results. Borda count is used in the weekly
Associated Press Poll to determine the top 25 college teams in various sports.

3.4. Instant Runoff Voting

Instant runoff voting is another commonly known voting method, using an iterative
approach. Voters use a preferential ballot to rank their preferences. At each
iteration, the votes are tallied by taking each voter’s first choice that has not already
been eliminated. The candidate receiving the fewest votes is then eliminated, and
the votes are recounted excluding that candidate. The method continues until only
one candidate remains, who is then declared the winner.

3.5. Instant Runoff Borda Count

Instant runoff borda count is simply the instant runoff iteration idea applied to the
borda method. In each iteration, the candidate with the fewest points is eliminated
from the election, and the votes are recalculated. The last remaining candidate is the
winner.

4. The Function P: The Likelihood of Strategic Voting

4.1. Assumptions and Definition

The main aim of this paper is to compare different voting methods based on how
often they encourage dishonest voting behavior. We now pose the question more
precisely. Given:

- An election with K candidates

- N total Voters

- A preferential ballot voting method M

- Ablock X of b identical votes, with one honest preference or vote
- N -brandomly generated votes



We define PCym(b,N) to be the probability that a dishonest vote from the block X
could result in a winner that X prefers to the winner that would result from X voting
honestly. Due to candidate symmetry, we will assume without loss of generality that
X has an honest preference of the candidates in order. For example, in an election
with 3 candidates A, B, and C, X will prefer A first, B second, and C last.

4.2. An Example and Some Properties of P

We first give an example of an election where a dishonest strategic vote by the block
X will result in a preferable outcome for X. Consider a 3 candidate plurality election
with 100 total voters and a block X of five votes. In other words, let K =3, N =100,
M = single vote plurality, and b = 5. Now consider the following outcome assuming X
votes honestly:

Candidate Votes

A 10
B 43
C 47

In this result, candidate C wins the election, which is the worst possible outcome

according to the preferences of X. Since X voted honestly, we know that five votes
were cast in favor of candidate A. Now suppose X had voted in favor of its second
choice candidate, B. The five votes would be taken from A and given to B, yielding
the following result:

Candidate Votes

A 5
B 48
C 47

Now candidate B is the winner, which is a better outcome for X. This example is
similar in nature to the aforementioned presidential elections of 1992 and 2000,
where candidate A is the least popular candidate. In both cases, if even a relatively
modest portion of candidate A’s supporters with the same second choice voted for
their second choice over candidate A, they may have been able to influence the
election in their favor.

While examples of these situations abound for all of the voting methods we study,
we intuitively note two qualitative properties the situation must satisfy. In order to
have influence, b must be sufficiently large relative to N, lest X be drowned out by
the variance in the random votes, but b must also not be too large, as X could then
simply dominate the election with an honest vote. In particular, it is clear that for
every voting method M which satisfies the majority criterion:



PXy(b,N) = 0 for b > N/2, for any K.

This is simple to verify, since X may simply vote honestly, and candidate A will
receive the majority of the votes, forcing a victory for A, the best outcome for X.

Then we may infer that for PXy(b,N) to achieve a high value, b must be significant
relative to N, but not too large. This inference is affirmed in our experimental
calculations of PXy(b,N).

4.3. Calculation of P by Simulation

[t is very difficult to work with PXy(b,N) analytically, as it depends on 3 variables
and which voting method is used. Because it is difficult to make general statements
about P, we look to computational method to allow us to estimate its value for
various parameters and methods. We therefore estimate PXy(b,N) using the
following procedure:

Simulate N-b random votes

Compute the winner using method M using the honest vote for X.

Compute the winner using method M for all other possible votes for X.

If the any of the winners from step 3 are preferable to the winner using the
honest vote, then it is advantageous for X to vote dishonestly

5. Repeat many times (in our calculations, 10,000 times), and compute PXy(b,N)
as the proportion of times that it was advantageous for X to vote dishonestly

BN

As an example, Figure 1 shows the results of such a calculation for Ranked Pairs and
Plurality voting, where N and K are fixed and several b are chosen. The authors
performed these calculations in MATLAB. We will see in the next section why it is
appealing to view P as a curve in terms of the block size b, rather than attempting to
examine it as a surface of both b and N. Our initial suspicions about the impact of
block size are affirmed in this chart, as P increases with b initially, but then
decreases past a certain point, essentially disappearing for the larger b. We note that
Ranked Pairs seems to encourage dishonest voting less than Plurality for small b,
but as b increases, the opposite becomes true.
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Figure 1: Graphs of P for Ranked Pairs and Plurality voting. N = 1000, K = 3,
b =10, 20, ... 100. 10,000 simulations.

Here we see that for b = 20, approximately 7% of elections will result in a scenario
where X should vote dishonestly using the plurality method. For b = 30, using
Ranked Pairs, we see that about 5% of elections will results in a scenario where X is
incented to vote dishonestly.

5. Block Size in Units of VN

5.1. Motivation

In order to simplify our analysis of P, we attempt to relate the impact of b to its
value relative to N. Intuitively; P should depend somehow on the size of b relative to
N, rather than depending on either absolutely on either of them. But how do we
measure the importance of b votes among N votes? There are many options. We
could consider b as a percentage of N, for example. In the next section, we provide a
relatively simple rationale for measuring b in units of the square root of N, thus
providing a sensible way of comparing the relative values of b and N that is
unanimously supported by our data.

5.2. Three Candidate Plurality

In a Single Vote Plurality Election, only the first choice on each ballot is considered,
with one vote going to that choice. Consider a 3 candidate election with N-b
randomly generated votes, we may then consider the votes received by each



candidate as a Trinomial random variable with N-b trials with p1= p2= p3=1/3. If we
denote the number of votes received by candidate A as #A, we have:

#A 1/3
#B| ~ Trinomial (N —b,|1/3 >
#C 1/3

Here, #A, #B, #C are correlated binomials with N-b trials and p = 1/3. Therefore we
can compute the expectation and variance of each, as well as their covariances:

E(#A) = N-b
3
2(N — b)
Var(#4) = ~———
9
N—b
COV(#A,#B) = ———

9

Note that all three candidates have the same expected value and variance in the
number of votes they receive, by symmetry, and all pairs of different candidates
have the same covariance. When considering the influence of the block in
determining the winner of a Plurality election, we aim to know the probability that b
is greater than the difference between the number of votes received first and second
place candidates. Since we are considering differences of votes, we compute:

N-b N-b _

E(#A— #B) = E(#4) - E(#B) = — 5

2(N — b)

Var(#A — #B) = Var(#A) + Var(#B) — 2COV (#A,#B) = 3

Again, we note that the we obtain the same results for any pair of candidates.
Therefore we note that the difference of votes between two candidates is binomial

with mean 0 and standard deviation proportional to VN — b. Then, as n goes to
infinity, we use the normal approximation to obtain:

4 —wauc—#m)~mvn| (O) V222 1
( ’ ) <0>' 3 [1 2

Where MVN is the multivariate normal distribution (bivariate in this case) with
mean vector and covariance matrix given by our calculations above. Now let:

z=b/\VN

Then we have:



(#C — #A,#C — #B) ~ MVN ((8),@[? ; ) ~ MVN (@gﬁ ; )

We may max the second approximation since as N tends to infinity, it will dominate
any factor of its square root. Now consider the case when X is incented to vote
dishonestly. In terms of the votes cast before V, this is when C beats A by more than
b votes, and C beats B by less than B votes. Then V will cast its ballots for B, its
second choice, and B will win over C, V’s third choice. That is:

#C —#A>Db,b>#(C —#B >0

Finally, we calculate p for large N:

© ~b
pglurality (b' N) = f f (p(()) Q[Z 1] (X, y)dydx
b 0 07311 2

o zVN © rz
= f f (p(O)E[Z 1] (X, y)dydx = f f @(0)1[2 1] (x, y)dydx
zVN /0 0o3l1 2 z Jo ‘o73l1 2
= 0,—z) — —Z,—Z
(e T i R
Where ¢ and ¢ are the probability density function and the cumulative distribution
function for the multivariate normal, respectively. The second to last equality is due
to a simple change of variables, very much the one used to standardize the normal.

We now have p written as a function only of z for large N. This approach may be
generalized to plurality for any number of candidates, yielding:

k
Y{I_I)TOIO p’}glurality(Z\/N; N) = (k—=2)*1I, — z I
i=2

Where:

Ij = ¢ onN[2 1 (0,0,...O,—Z,—Z,...)
(o)'§[1 2]
Where the first k-j-1 components are 0, and the rest (the other j components) are -z.

5.3. Transforming the Data. P as a function of b/+/N

In the last section, we showed for large N that we may view P as a function of a

single variable b/\/N in the case of plurality. We now look to the data to check the
validity of this approximation.



Figure 2 shows 3 curves of P for a 3 candidate Plurality election in terms of b, each
for a fixed N. We could plot them as cross sections of a P surface, but we instead
attempt to standardize the magnitude of the effect of each block size for each N

dividing it by VN,
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Figure 2: Graphs of P for Plurality voting. N = 1000, 1500, 2000, K = 3,
b =10, 20, ... 100. 10,000 simulations.

Figure 3 shows the same data as figure 2, but with each curve rescaled so the X axis
is represented by our measure b/+/N. Under this transformation, the curves become
nearly identical! This is encouraging, as it allows us to easily calculate P for any
block size and number of votes, however large, by simply calculating P forab and N
with where b has the same ratio to VN. This is a valuable tool, as it is
computationally very expensive to simulate elections with millions of voters or
more, as is often the case in real world applications. We will see in the following
sections that this property empirically holds for all voting methods considered in
this paper. We also note our theoretically obtained formula for p as a function of z is
nearly identical to our simulated results, as seen in figure 4. Figure 5 contains plots
of our analytic solution for a plurality election with many candidates. For large
numbers of candidates, these curves are computationally expensive to simulate, as
the number of different ballots cast we must check is k!.

10
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Figure 3: Graphs of P for Plurality voting. N = 1000, 1500, 2000, K = 3,
b =10, 20, ... 100. 10,000 simulations. X values for each curve scaled by the square

root of N
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Figure 4: Graphs of derived formula for p and simulated data for 3 candidate

plurality. N = 500, 1000, 1500, 2000. b = 10, 20, ... 100. 10,000 simulations,
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P(z) for Plurality Elections with Many
Candidates
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Figure 5: P for high numbers of candidates. The fast growth of k! would make it
infeasible to estimate these curves (except for 5 candidates) by simulation. We are
still bound computationally by our ability to compute the k-1 dimensional normal

cdf.

5.4. Conjectures Concerning P as a Function of b/v/N

While our data supports our reduction of P to a univariate function, we have not
proven that this is always true. In particular, our observations from simulation lead
us to conjecture the following:

For any method M with certain properties, we may take the following limit:
lim pf (zVN,N) = pl(2)
n—->oo

Then we are able to determine P approximately for any b, N, no matter how large,
simply by determining z and using this approximation.

We note that our method of computing P theoretically was not completely specific
to plurality. As we assume random voting for all methods used, we see that all P will
be integrals over normal distributions, leaving us only to determine the domain over
which to integrate. This fact gives more reason to believe that considering P as a
univariate function of z is possible for large N, as a similar change of variables may
work. For methods other than plurality, these domains become much more
complicated. Further study would obtain these domains in order to determine P
analytically for large N for various other voting methods.

12



We also wonder about the limiting behavior of P for elections with many candidates.
In other words, as k tends to infinity, does PX(z) approach a constant curve? Given
our analytic result for plurality, we see that the maximum value achieved by P is
increasing in k, but this peak is achieved closer and closer to the origin, where P
must always equal zero.

6. Results

6.1. A First Look

We are pleased to find that our consideration of b in units of VN experimentally
yields a standardized way of considering the relative influence of the block size b on
the outcome of the election for all of the voting methods considered. We will refer to

z as b/+V/N. Figure 6 shows the simulated estimates of P for three candidate elections
using the five different voting methods specified. Figure 7 shows the simulated
estimates of P for four candidate elections using the five different voting methods
specified.

We see very similar qualitative results for both 3 and 4 candidate elections. In both
cases, Borda count is most likely to yield scenarios in which X should vote
dishonestly by far, for all z. The other methods are far more similar. Interestingly
the curves for Instant Runoff Voting and Instant Runoff Borda are nearly identical
over the entire domain. The Ranked Pairs curve approaches the IRV and IRBorda
curves as z increases, and essentially coincides with them for z greater than 1.5. For
z less than 1, Ranked Pairs is least likely to promote dishonest voting, followed by
the instant runoff methods, and then plurality. For z greater than 1, plurality is the
method which encourages the least dishonesty, followed by ranked pairs, and then
the instant runoff methods. Despite this, we note that plurality has the highest
maximum value for P, other than Borda. Ranked Pairs has the lowest maximum
value for P.

The P curves for four candidate elections are qualitatively almost identical, with all
of the same relationships from the previous paragraph holding true. We note,
however, that the values of P are much higher. A likely suspect of this is that the
number of different possible ballots for four candidates is 24, rather than the 6 for 3
candidates. The greatly increased number of different votes X can choose from
allows for a greater likelihood that they will find a way to strategically benefit their
outcome.

1R



0.14
0.12
0.1
0.08 M = Plurality
P3M E M = Ranked Pairs
0.06 AM = Borda
XM = IR Borda
0.04
*M = Instant Runoff
0.02
0

0 0.5 1 1.5 2 2.5 3 3.5
z = Block Size Divided By Square Root of N

Figure 6: Graphs of P for each of 5 voting methods. N = 1000, 1500, 2000, 2500. 3
Candidates, b = 10, 20, ... 100. 10,000 simulations.
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Figure 7: Graphs of P for each of 5 voting methods. N = 1000, 1500, 2000, 4
Candidates, b = 10, 20, ... 100. 10,000 simulations.
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6.2. Ways to Choose a Method. Metrics

Looking at our curves for P qualitatively, we may begin to see which method we
might prefer to use when trying to minimize dishonest votes from an electorate. If
very small voter blocks are likely to form in the electorate, then Ranked Pairs is
likely to be the best choice. If larger blocks are likely to form, the Plurality may be
the best performer. Among these five methods, Plurality and Ranked Pairs seem to
be the only logical choices for the best method for minimizing dishonesty, as Ranked
Pairs performs at least as well as all other methods across all z, except for Plurality.

For the unsure reader, we propose three simple metrics that may be used to
evaluate these methods.

The first metric is the maximum metric. True to its name, this metric is given by the
maximum value of PXy for a method M in a K candidate election. By this metric,
ranked pairs is the best method, as it has the lowest maximum of all of the methods,
and Plurality voting is the second worst (after Borda). Using this metric, the reader
would choose Ranked Pairs, as it minimizes the maximum probability that dishonest
voting would be advantageous.

Another metric we propose is the integral metric. This relies on our prior conjecture
that P be at least a measurable function in z, if not continuous as we have
conjectured. For purposes of calculating this metric using our simulated values, we
simply linearly spline the data, and take the integral of the resulting curve.

K=3 Maximum Secant Integral

Plurality 0.0711 0.112411067 0.073354
Ranked Pairs 0.0528 0.051262136 0.073386
Borda Count 0.1233 0.159096774 0.198555
IR Borda 0.0607 0.090488968 0.084329
Instant Runof 0.0618 0.079741935 0.085046
K=4 Maximum Secant Integral

Plurality 0.1333 0.258333333 0.120389
Ranked Pairs 0.1033 0.115548098 0.134657
Borda Count 0.2322 0.299612903 0.397978
IR Borda 0.1255 0.161935484 0.161355
Instant Runof 0.12 0.15483871 0.160459

Figure 8: Values of three P-curve metrics for each voting method

Our last metric is the secant metric, which is given by the slope of the line segment
from the origin to the maximum point of the curve P for a given method. This metric

18



rewards methods whose maxima are smaller, and occur for larger block sizes, and
are therefore more stable against smaller blocks. The results of these metrics are
given in figures 8.

7. Conclusions and Further Questions

This paper examined the likelihood that a block of voters would be able to influence
an election to their advantage by voting dishonestly, depending on the size of the
block relative to the total electorate, and the voting method used to calculate the
winner. We found that the Ranked Pairs method performed at least as well as all of
the other methods except for plurality under all circumstances. Plurality was the
least likely method to encourage dishonesty for large block sizes, but was among the
more likely to encourage dishonest voting for small blocks.

This paper explored a new way of comparing different preferential ballot voting
methods, placing importance on voters not being rewarded for voting dishonestly or
penalized for voting honestly. We have found many interesting phenomena, but
leave many questions unanswered. In particular, our conjectures from section 5.4.,
concerning P as a function of the single variable z, are especially interesting.

Overall, we hope that these methods, and any further work done on this topic may

yield a better understanding of the dynamics of voter strategy, and which voting
methods allow encourage more strategy rather than simple honest voting.
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